Skip to main content
Log in

Investigation on the Nature of the Concentration-Induced Non-Fermi-Liquid Behavior in YbCu3.5Al1.5

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

YbCu5−xAlx exhibits long range antiferromagnetic order for x>1.5 with TN rising up to 2 K for the composition YbCu3Al2. This development of antiferromagnetic order is due to a valence shift from the non-magnetic Yb 4f 14 ground state in YbCu5 to the magnetic 4f13 ground state in YbCu3Al2. At the critical concentration x=1.5 the system is in a state of magnetic instability, where typical non-Fermi-liquid (nFl)-properties are observed, e.g., a−log T contribution in C/T and a power law in ρ=ρ0+cTα with α<2. We have measured the specific heat and electrical resistance of YbCu3.5Al1.5 in various magnetic fields in order to clarify the nature of the non-Fermi- liquid behavior in this series. The specific heat divided by temperature in zero field can be described by a Self Consistent Renormalization (SCR)-model for a 3D antiferromagnet down to the lowest measured temperature and over more than a decade of temperature. The resistance data clearly deviate from the Fermi-liquid (Fl)-T2-behavior in zero magnetic field, whereas with increasing field, the range of the Fl-behavior enlarges. The derived SCR parameters indicate that the system is not exactly at the quantum critical point (QCP) and application of external magnetic field pushes the system further away from the QCP. A hyperscaling analysis of the specific heat data taken in various magnetic fields in the region where C/T is proportional to −log T points to collective effects responsible for the nFl-behavior in YbCu3.5Al1.5. The scaling disappears for T<240 mK which would point to a crossover from weakly interacting to non Gaussian strongly interacting spin fluctuations as the cause of the nFl-behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Bauer, E. Gratz, L. Keller, P. Fischer, and A. Furrer, Physica B 186–188, 608 (1993).

    Google Scholar 

  2. E. Bauer, R. Hauser, L. Keller, P. Fischer, O. Trovarelli, J. G. Sereni, J. J. Rieger, and G. R. Stewart, Phys. Rev. B 56, 711 (1997).

    Google Scholar 

  3. E. Bauer, R. Hauser, A. Galatanu, H. Michor, G. Hilscher, J. G. Sereni, M. G. Berisso, P. Pedazzini, M. Galli, F. Mirabelli, and P. Bonville, Phys. Rev. B 60, 1238 (1999).

    Google Scholar 

  4. H. v. Loehneysen, J. Phys. Condens. Matter 8, 9689 (1996).

    Google Scholar 

  5. K. Heuser, Dissertation, Universität Augsburg 1999, Shaker Verlag ISBN 3–8265–6343–3.

  6. F. M. Grosche, M. J. Steiner, P. Agrawal, I. R. Walker, D. M. Freye S. R. Julian, and G. G. Lonzarich, Physica B 281 & 282, 3 (2000).

    Google Scholar 

  7. E. Bauer, Adv. Phys. 40, 417 (1991).

    Google Scholar 

  8. E. Bauer, A. Galatanu, L. Naber, M. Galli, F. Mirabelli, C. Seuring, K. Heuser, E.-W. Scheidt, T. Schreiner, and G. R. Stewart, Physica B 281 & 282, 319 (2000).

    Google Scholar 

  9. C. Seuring, K. Heuser, E.-W. Scheidt, T. Schreiner, E. Bauer, and G. R. Stewart, Physica B 281 & 282, 374 (2000).

    Google Scholar 

  10. K. Heuser, E.-W. Scheidt, T. Schreiner, and G. R. Stewart, Phys. Rev. B 57, R4198 (1998).

    Google Scholar 

  11. E. Bauer, R. Hauser, E. Gratz, D. Gignoux, D. Schmitt, and J. G. Sereni, J. Phys. Condens. Matter 4, 7829 (1992).

    Google Scholar 

  12. R. Bachmann, F. J. DiSalvo Jr., T. H. Geballe, R. L. Greene, R. E. Howard, C. N. King, H. C. Kirsch, K. N. Lee, R. E. Schwall, H.-U. Thomas, and R. B. Zubeck, Rev. Sci. Instr. 43, 205 (1972).

    Google Scholar 

  13. T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995).

    Google Scholar 

  14. B. Andraka and A. M. Tsvelik, Phys. Rev. Lett. 67, 2886 (1991).

    PubMed  Google Scholar 

  15. O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F. M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, Phys. Rev. Lett. 85, 626 (2000).

    Google Scholar 

  16. K. Heuser, E.-W. Scheidt, T. Schreiner, and G. R. Stewart, Phys. Rev. B 58, R15959 (1998).

    Google Scholar 

  17. J. S. Kim, J. Alwood, S. A. Getty, F. Sharifi, and G. R. Stewart, Phys. Rev. B 62 (2000).

  18. A. M. Tsvelik and M. Reizer, Phys. Rev. B 48, 9887 (1993).

    Google Scholar 

  19. S. Korner, A. Weber, J. Hemberger, E. W. Scheidt, and G. R. Stewart, J. Low Temp. Phys. 121, 105 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seuring, C., Scheidt, EW., Bauer, E. et al. Investigation on the Nature of the Concentration-Induced Non-Fermi-Liquid Behavior in YbCu3.5Al1.5. Journal of Low Temperature Physics 123, 25–33 (2001). https://doi.org/10.1023/A:1017589213930

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017589213930

Keywords

Navigation