Skip to main content
Log in

Plankton community of a polyhumic lake with and without Daphnia longispina (Cladocera)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The impact of Daphnia longispina (Cladocera) on the plankton food web was studied in a polyhumic lake where this species comprised almost all zooplankton biomass. Plastic enclosures (volume 7 m3) were inserted into the lake retaining the initial water stratification except that in one enclosure zooplankton was removed. After the removal of Daphniaa rotifer, Keratella cochlearis, ciliates and heterotrophic nanoflagellates increased markedly and the density and biomass of bacteria decreased. Edible algal species, Cryptomonas rostratiformisand three small chrysophytes,Ochromonas, Pedinella and Spinifermonas, took advantage of the removal of Daphnia, while more grazing-resistant species declined. In spite of the changes in the species composition of phytoplankton, the removal of Daphnia did not affect the biomass, primary production or respiration of plankton. The results implied that the density of heterotrophic flagellates and ciliates was controlled by Daphnia, but in its absence the former took its role as the bacterial grazers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvola, L. & T. Tulonen, 1998. Effects of allochthonous dissolved organic matter (DOM) and nutrients on the growth of bacteria and algae from a highly humic lake. Env. Int. 24: 509–520.

    Google Scholar 

  • Arvola, L., K. Salonen, P. Kankaala & A. Lehtovaara, 1992. Diurnal vertical distribution of bacteria, algae and ciliates in a steeply stratified lake under high grazing pressure by Daphnia longispina. Hydrobiologia 229: 253–269.

    Google Scholar 

  • Arvola, L., A. Ojala, F. Barbosa & S. I. Heaney, 1991. Migration behaviour of three cryptophytes in relation to environmental gradients. Br. Phycol. J. 26: 361–373.

    Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microb. Ecol. 17: 111–126.

    Google Scholar 

  • Bergström, I., A. Heinänen & K. Salonen, 1986. Comparison of acridine orange, acriflavine, and bisbenzimide stains for enumeration of bacteria in clear and humic waters. Appl. Environ. Microbiol. 51: 664–667.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    Google Scholar 

  • Boraas, M. E., K. W. Estep, P. W Johnson & J. McN. Sieburth, 1988. Phagotrophic phototrophs: The ecological significance of mixotrophy. J. Protozool. 35: 249–252.

    Google Scholar 

  • Bossard, P. & U. Uehlinger, 1993. The effect of herbivorous crustacean zooplankton on epilimnetic carbon and phosphorus cycling. Hydrobiologia 254: 21–34.

    Google Scholar 

  • Burns, C. W. & J. J. Gilbert, 1986a. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31: 848–858.

    Google Scholar 

  • Burns, C. W. & J. J. Gilbert, 1986b. Direct observations of the mechanisms of interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31: 859–866.

    Google Scholar 

  • Edmondson, W. T. & A. H. Litt, 1982. Daphnia in Lake Washington. Limnol. Oceanogr. 27: 272–293.

    Google Scholar 

  • Geravais, F., 1998. Ecology of cryptophytes coexisting near freshwater chemocline. Freshwat. Biol. 39: 61–78.

    Google Scholar 

  • Gilbert, J. J. & R. S. Stemberger, 1985. Control of Keratella populations by interference competition from Daphnia. Limnol. Oceanogr. 30: 180–188.

    Google Scholar 

  • Hakala, I., 1971. A new model of the Kajak bottom sampler, and other improvements in the zoobenthos sampling technique. Ann. Zool. Fenn. 8: 422–426.

    Google Scholar 

  • Hessen, D. O., T. Andersen & A. Lyche, 1989. Differential grazing and resource utilization of zooplankton in a humic lake. Arch. Hydrobiol. 114: 321–347.

    Google Scholar 

  • Järvinen, M. & K. Salonen, 1998. Influence of changing food web structure on nutrient limitation of phytoplankton in a highly humic lake. Can. J. Fish. Aquat. Sci. 55: 2562–2571.

    Google Scholar 

  • Jürgens, K., 1994. Impact of Daphnia on planktonic microbial food webs – A review. Mar. Microb. Food Webs 8: 295–324.

    Google Scholar 

  • Jürgens, K., H. Arndt & K. O. Rothhaupt, 1994. Zooplankton mediated changes of microbial food web structure. Microb. Ecol. 27: 27–42.

    Google Scholar 

  • Kankaala, P., 1988. The relative importance of algae and bacteria as food for Daphnia longispina (Cladocera) in a polyhumic lake. Freshw. Biol. 19: 285–296.

    Google Scholar 

  • Kerfoot, W. C., 1987. Cascading effects and indirect pathways. Kerfoot, W. C. & A. Sih (eds), Predation, Direct and Indirect Impacts on Aquatic Communities. Univ. Press of New England, Hanover and London: 57–70.

    Google Scholar 

  • Kitchell, J. A. & J. F. Kitchell, 1980. Size-selective predation, light transmission and oxygen stratification: evidence from the recent sediments of manipulated lakes. Limnol. Oceanogr. 25: 389–402.

    Google Scholar 

  • Lampert, W., 1987. Feeding and nutrition in Daphnia. In Peters R. H. & R. De Bernardi (eds.), Daphnia. Mem. Ist. ital. Idrobiol. 45: 143–192.

  • Lampert, W. & K. O. Rothhaupt, 1991. Alternating dynamics of rotifers and Daphnia magna in a shallow lake. Arch. Hydrobiol. 120: 447–456.

    Google Scholar 

  • Levitan, C., 1987. Formal stability analysis of a planktonic freshwater community. In Kerfoot, W. C. & Sih, A. (eds), Predation, Direct and Indirect Impacts on Aquatic Communities. Univ. Press of New England, Hanover and London: 71–100.

    Google Scholar 

  • MacIsaac, H. J. & J. J. Gilbert, 1990. Does exploitative or interference competition from Daphnia limit the abundance of Keratella in Loch Leven? A reassessment of May and Jones (1989). J. Plankton Res. 12: 1315–1322.

    Google Scholar 

  • May, L. & D. H. Jones, 1989. Does interference competition from Daphnia affect populations of Keratella cochlearis in Loch Leven, Scotland? J. Plankton Res. 11: 445–461.

    Google Scholar 

  • Matveeva, L. K., 1989. Interrelations of rotifers with predatory and herbivorous Cladocera: a review of Russian works. Hydrobiologia 186/187: 69–73.

    Google Scholar 

  • McMahon, J. W. & F. H. Rigler, 1965. Feeding rate of Daphnia magna Straus in different foods labelled with radioactive phosphorus. Limnol. Oceanogr. 10: 105–113.

    Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single-solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31–36.

    Google Scholar 

  • Naumann, E., 1921. Spezielle Untersuchungen uber die Ernährungsbiologie des tierischen Limnoplanktons. I. Uber die Technik des Nahrungserwerbs bei den Cladoceren und ihre Bedeutung fur die Biologie der Gewässertypen.-Lunds Universitets Årsskrift., N.F. Avd.2 17: 1–27.

    Google Scholar 

  • Ojala, A., S. I. Heaney, L. Arvola & F. Barbosa, 1996. Growth of migrating and non-migrating cryptophytes in thermally and chemically stratified experimental columns. Freshwat. Biol. 35: 599–608.

    Google Scholar 

  • Porter, K. G., M. L. Pace & J. F. Battey, 1979. Ciliate protozoans as links in freshwater planktonic food chains. Nature 277: 563–565.

    Google Scholar 

  • Rocha, O. & A. Duncan, 1985. Relationship between cell carbon and cell volume in freshwater algae species used in zooplankton studies. J. Plankton Res. 7: 279–294.

    Google Scholar 

  • Salonen, K., 1981. Rapid and precise determination of total inorganic carbon and some gases in an aqueous solutions. Wat. Res. 15: 403–406.

    Google Scholar 

  • Salonen, K. & L. Arvola, 1988. A radiotracer study of zooplankton grazing in two small humic lakes. Verh. int. Ver. Limnol. 23: 462–469.

    Google Scholar 

  • Salonen, K. & A. Lehtovaara, 1992. Migrations of haemoglobinrich Daphnia longispina in a small, steeply stratified, humic lake with an anoxic hypolimnion. Hydrobiologia, 229: 271–288.

    Google Scholar 

  • Salonen, K., R. I. Jones & L. Arvola, 1984. Hypolimnetic phosphorus retrieval by diel vertical migrations of phytoplankton. Freshw. Biol. 14: 431–438.

    Google Scholar 

  • Salonen, K., L. Arvola, T. Tulonen, T. Hammar, T-R. Metsälä, P. Kankaala & U. Münster, 1992a. Planktonic food chains of a highly humic lake. I. A mesocosm experiment during the spring primary production maximum. Hydrobiologia 229: 125–142.

    Google Scholar 

  • Salonen, K., P. Kankaala, T. Tulonen, T. Hammar, M. James, T-R. Metsälä & L. Arvola, 1992b. Planktonic food chains of a highly humic lake. II. A mesocosm experiment in summer during dominance of heterotrophic processes. Hydrobiologia 229: 143–157.

    Google Scholar 

  • Sanders, R.W. & K. G. Porter, 1988. Phagotrophic phytoflagellates. In Marshall, K. C. (ed.), Advances in Microbial Ecology. Plenum Publ. Corp. 10: 167–192.

  • Sanders, R. W. & K. G. Porter, 1990. Bacterivorous flagellates as food resources for the freshwater crustacean zooplankter Daphnia parvula. Limnol. Oceanogr. 35: 188–191.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnol. Oceanogr. 34: 673–687.

    Google Scholar 

  • Schindler, D. W., R. V. Schmidt & R. A. Reid, 1972. Acidification and bubbling as an alternative to filtration in determining phytoplankton production by the 14C method. J. Fish. Res. Bd Can. 29: 1627–1631.

    Google Scholar 

  • Skogstad, A., L. Granskog & D. Klaveness, 1987. Growth of freshwater ciliates offered planktonic algae as food. J. Plankton Res. 9: 503–512.

    Google Scholar 

  • Tranvik, L. J. & J. McN. Sieburth, 1989. Effects of flocculated humic matter on free and attached pelagic micro-organisms. Limnol. Oceanogr. 34: 688–699.

    Google Scholar 

  • Tulonen, T., 1993. Bacterial production in a mesohumic lake estimated from (14C)-leucine incorporation rate. Microbiol. Ecol. 26: 201–217.

    Google Scholar 

  • Tulonen, T., K. Salonen & L. Arvola, 1992. Effects of different molecular weight fractions of dissolved organic matter on the growth of bacteria, algae and protozoa from a highly humic lake. Hydrobiologia 229: 239–252.

    Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplanktonmethodik. Mitt. int. Ver. Limnol. 9: 1–38.

    Google Scholar 

  • Vadstein, O., B. O. Harkjerr, A. Jensen, Y. Olsen & H.Reinertsen, 1989. Cycling of organic carbon in the photic zone of a eutrophic lake. Limnol. Oceanogr. 34: 840–855.

    Google Scholar 

  • Verity, P. G., C. Y. Roberston, C. R. Tronzo, M. G. Andrews, J. R. Nelson & M. E. Sieracki, 1992. Relationships between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol. Oceanogr. 37: 1434–1446.

    Google Scholar 

  • Wickham, S. S. & J. J. Gilbert, 1993. The comparative importance of competition and predation by Daphnia on ciliated protists. Arch. Hydrobiol. 126: 289–313.

    Google Scholar 

  • Wood, E. D., F. A. J. Armstrong & F. A. Richards, 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. mar. biol. Ass. U.K. 47: 23–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arvola, L., Salonen, K. Plankton community of a polyhumic lake with and without Daphnia longispina (Cladocera). Hydrobiologia 445, 141–150 (2001). https://doi.org/10.1023/A:1017588913646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017588913646

Navigation