Skip to main content
Log in

Optimal Spectrum for the Borocarbides YNi2B2C and LuNi2B2C

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The concept of an optimal electron–phonon interaction spectral density as an Einstein spectrum which allows to describe all physical properties of a superconductor in an optimal way is developed from Carbotte's original definition of an optimum spectrum. It is shown, using the borocarbides YNi2B2C and LuNi2B2C as examples, that such a concept is meaning ful even for anisotropic systems. An Einstein spectrum is sufficient for clean-limit systems, a 2δ-peak spectrum is better suited for anisotropic systems with impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. M. Eliashberg, Sov. Phys. JETP 11, 696 (1960).

    Google Scholar 

  2. W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965).

    Google Scholar 

  3. J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).

    Google Scholar 

  4. C. R. Leavens, Solid State Commun. 17, 1499 (1975).

    Google Scholar 

  5. B. Mitrovi? and J. P. Carbotte, Solid State Commun. 40, 249 (1981).

    Google Scholar 

  6. S. Manalo, Diploma thesis, Technische Universität Wien, Karlsplatz 13, 1040 Wien, Austria (1999) unpulished; S. Manalo, H. Michor, M. El-Hagary, G. Hilscher, and E. Schachinger, Phys. Rev. B (in print) and cond-mat/9911305.

  7. F. Gompf, W. Reichardt, H. Schober, B. Renker, and M. Buchgeister, Phys. Rev. B 55, 9058 (1997)

    Google Scholar 

  8. W. Weber, Universität Dortmund, Institut für Theoretische Physik II, Otto-Hahn-Str. 4, D-44221 Dortmund (unpublished).

  9. Shi Li et al., Int. J. Mod. Phys. 13, 3725 (1999).

    Google Scholar 

  10. M. Prohammer and E. Schachinger, Phys. Rev. B 36, 8353 (1987).

    Google Scholar 

  11. V. Shulga, S.-L. Drechsler, G. Fuchs, k.-H. Müller, K. Winzer, M. Heinecke, and K. Krug, Phys. Rev. Lett. 80, 1730 (1998).

    Google Scholar 

  12. R. S. Gonnelli, A. Morello, G. A. Ummarino, V. A. Stepanov, G. Behr, G. Graw, V. Shulga, and S.-L. Drechsler, cond-mat/0007033 (unbublished).

  13. E. Langmann, Phys. Rev. B 46, 9104 (1992).

    Google Scholar 

  14. W. Pitscheneder and E. Schachinger, Phys. Rev. B 47, 3300 (1993).

    Google Scholar 

  15. D. Markovitz and L. P. Kadanoff, Phys. Rev. 131, 563 (1963).

    Google Scholar 

  16. J. M. Daams and J. P. Carbotte, J. Low Temp. Phys. 43, 263 (1981).

    Google Scholar 

  17. J. Bardeen and M. Stephen, Phys. Rev. 136, 1485 (1964).

    Google Scholar 

  18. A. Junod, T. Jarlborg, and J. Muller, Phys. Rev. B 27, 1568 (1983).

    Google Scholar 

  19. H. Michor, T. Holubar, C. Dusek, and G. Hilscher, Phys. Rev. B 52, 16165 (1995).

    Google Scholar 

  20. F. Bommeli, L. Degiorgi, P. Wachter, B. K. Cho, P. C. Canfield, R. Chau, and M. B. Maple, Phys. Rev. Lett. 78, 547 (1997).

    Google Scholar 

  21. H. W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, and D. Eckert, Phys. Rev. B 44, 7585 (1991).

    Google Scholar 

  22. N. R. Werthammer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

    Google Scholar 

  23. F. Marsiglio, M. Schossmann, E. Schachinger, and J. P. Carbotte, Phys. Rev. B 35, 3226 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manalo, S., Schachinger, E. Optimal Spectrum for the Borocarbides YNi2B2C and LuNi2B2C. Journal of Low Temperature Physics 123, 149–163 (2001). https://doi.org/10.1023/A:1017588310992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017588310992

Keywords

Navigation