Skip to main content
Log in

Microstructures and their stability in rapidly solidified Al-Fe-(V, Si) alloy powders

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Microstructures and their stability in as-atomised Al-6.5Fe-1.5V and Al-6.5Fe-1.5V-1.7Si powders have been investigated using transmission electron microscopy (TEM) equipped with energy dispersive X-ray spectroscopy (EDXS), scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. It was observed that microstructures of the as-atomised powder particles showed a close relationship with powder particle sizes. The as-atomised powders exhibited three types of microstructures, namely 'zone A', 'zone B' and 'zone C'. The 'zone A' type microstructure consisted of very fine and homogeneous distributed precipitates in the α-Al matrix. The 'zone B' microstructure represented the regions consisting of microcellular structures whereas the 'zone C' microstructure represented the regions consisting of coarse cellular structures and globular quasi-crystalline phase particles. Fine powder particles exhibited both 'zone A' and 'zone B' microstructures. The size of 'zone A' decreased with increasing powder particle sizes. The intercellular phases in 'zone B' of both Al-Fe-V and Al-Fe-V-Si were very fine, randomly oriented microquasi-crystalline icosahedral particles. Microstructures of coarse powder particles exhibited both 'zone B' and 'zone C'. The intercellular phases in 'zone C' of Al-Fe-V powders could be Al6Fe, whereas in Al-Fe-V-Si powders they were probably silicide phase. Formation of powder microstructures may be explained by the interactions between the growing α-Al fronts with the freely dispersed, primary phase particles or the solute micro-segregation. Studies using DSC techniques have revealed the microstructural stability of as-atomised powders. There were three DSC exotherms observed in the as-atomised Al-Fe-V powders. The 'zone A' was stable at elevated temperatures and the exotherm peak corresponding to the transformation reactions occurring in 'zone A' was at 360°C. The exotherm peak, which might correspond to the transformation of the globular clusters of microquasi-crystalline icosahedral phase to single-phase icosahedral particles, was at 450°C. The exotherm peak, which may correspond to the formation of Al13Fe4 and Al45(V, Fe)7 phases, was at 500°C. In the as-atomised Al-Fe-V-Si powders, only one exotherm was observed with a peak at 400°C. This exotherm may correspond to precipitation of silicide phase particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. J. Grant, J. Metals 35 (1983) 20.

    Google Scholar 

  2. W. Wang, D. Liu and N. J. Grant, Scripta Metall. 21 (1987) 1279.

    Google Scholar 

  3. H. Jones, Mater. Sci. Eng. 5(1) (1969/70) 1.

    Google Scholar 

  4. I. R Hughes and H. Jones,J. Mater. Sci. 11 (1976) 1781.

    Google Scholar 

  5. R. M. K. Young and T. W. Clyne, Scripta Metall. 15 (1981) 1211.

    Google Scholar 

  6. W. J. Boettinger, L. Bendersky and J. G. Early, Metall. Trans. A. 17A(1986)781.

    Google Scholar 

  7. W. J. Boettinger, L. A. Bendersky, R. J. Schaefer and F. S. Biancaniello, ibid. 19A (1988) 1101.

    Google Scholar 

  8. M. G. Chu and D. A. Granger, ibid. 21A (1990) 205.

    Google Scholar 

  9. P. Gilgien, A. Zryd and W. Kurz, Acta Metall. Mater. 43(9) (1995) 3477.

    Google Scholar 

  10. I. J. Polmear, M. J. Couper and M. J. Bannister, Mater. Forum. 12 (1988)54.

    Google Scholar 

  11. R. A. Dunlap and K. Dini, Can. J. Phys. 63 (1985) 1267.

    Google Scholar 

  12. R. M. K. Young and J. H. Tweed, Mater. Sci. Eng. A134 (1991) 1153.

    Google Scholar 

  13. J. L. Murray, A. J. McALLISTER, R. J. SCHAEFER, L. A. BENDERSKY, F. S. BIANCANIELLO and D. L. MOFFAT, Metall. Trans. A. 18A (1985) 385.

    Google Scholar 

  14. D. J. Skinner, V. R. V. Ramanan, M. S. Zedalis and N. J. Kim,Mater. Sci. Eng. 99 (1988) 407.

    Google Scholar 

  15. M. S. Zedalis, V. R. V. Ramanan and D. J. Skinner, in “Thermal Analysis in Metallurgy,” edited by R. D. Shull and A. Joshi (The Mineral, Metals & Materials Society, Pennsylvania,1992) p.279.

    Google Scholar 

  16. P. A. Bancel, P. A. Heiney, P. W. Stephens, A. I. Goldman and P. M. Horn, Phys. Rev. Lett. 54(22) (1985) 2422.

    Google Scholar 

  17. L. Bendersky,ibid. 55(14) (1985) 1461.

  18. L. Bendersky, R. J. Schaefer, F. S. Biancaniello, W. J. Boettinger, M. J. Kaufman and D. Shechtman,Scripta Metall. 19 (1985) 909.

    Google Scholar 

  19. J. W. Cahn, D. Shechtman and D. Gratias,J. Mater. Res. 1(1) (1985)13.

    Google Scholar 

  20. V. Elser, Phys. Rev. B. 32(8) (1985) 4892.

    Google Scholar 

  21. R. J. Schaefer and L. Bendersky, Scripta Metall. 20 (1985) 745.

    Google Scholar 

  22. J. W. Zindel, P. Kurath and H. L. Fraser, in “High Strength Powder Metallurgy Aluminum Alloys II,” edited by G. J. Hildeman and M. J. Koczak (The Metallurgical Society, Pennsylvania, 1985) p.213.

    Google Scholar 

  23. M. Audier and P. Guyot,Phil. Mag. B. 53(1) (1986) L43.

    Google Scholar 

  24. R. D. Field, J. W. Zindel and H. L. Fraser, Scripta Metall. 20 (1986) 415.

    Google Scholar 

  25. F. Gillessen and D. M. Herlach, Mater. Sci. Eng. A134 (1991) 1220.

    Google Scholar 

  26. K. F. Kelton, Int. Mater. Rev. 38(3) (1993) 105.

    Google Scholar 

  27. C. M. Adam, V. R. V. Ramanan and D. J. Skinner, in “Undercooled Alloy Phases,” edited by E. W. Collings and C. C. Koch (The Metallurgical Society, Pennsylvania, 1987) p.59.

    Google Scholar 

  28. M. Gremaud, M. Carrard and W. Kurz, Acta Metall. Mater. 38(12) (1990) 2587.

    Google Scholar 

  29. M. Carrard, M. Gremaud and M. Pierantoni, Scripta Metall. Mater. 25 (1991) 925.

    Google Scholar 

  30. K. K. Fung, C. Y. Yang, Y. Q. Zhou, J. G. Zhao, W. S. Zhan and B. G. Shen, Phys. Rev. Lett. 56(19) (1986) 2060.

    Google Scholar 

  31. X. D. Zou, K. K. Fung and K. H. Kuo, Phys. Rev. B. 35(9) (1987) 4526.

    Google Scholar 

  32. K. H. Kuo, Mater. Sci. Forum. 22–24 (1987) 131.

    Google Scholar 

  33. D. H. Kim and B. Cantor, Phil. Mag. A. 69(1) (1994) 45.

    Google Scholar 

  34. P. S. Gilman and S. K. Das, in Proceedings of International Conference on PM Aerospace Materials (A Metal Powder Report Conference) Luzern, November 2–4, 1987 (MPR Publishing Services, Shrewsbury 1988) Vol. 27.1.

    Google Scholar 

  35. D. J. Skinner, in “Dispersion Strengthened Aluminum Alloys,” edited by Y.-W. Kim and W. M. Griffith (The Minerals, Metals and Materials Society, 1988) p.181.

  36. M. A. Rodriguez and D. J. Skinner, J. Mater. Sci. Lett. 9 (1990) 1292.

    Google Scholar 

  37. N. J. Kim, Int. J. Rapid Solidification 6 (1991) 175.

    Google Scholar 

  38. V. R. V. Ramanan, D. J. Skinner and M. S. Zedalis, Mater. Sci. Eng. A134 (1991) 912.

    Google Scholar 

  39. W. J. Park, S. Ahn and N. J. Kim, ibid. A189 (1994) 291.

    Google Scholar 

  40. Y. L. Tang, S. K. Guan, D. S. Shao, N. F. Shen and H. Q. Hu, J. Mater. Sci. Lett. 12(1993) 1749.

    Google Scholar 

  41. P. Gilman, Metals and Materials 6 (1990) 504.

    Google Scholar 

  42. R. J. Dashwood, Ph.D. thesis, University of London, 1990.

  43. E. S. Humphreys, P. J. Warren and A. Cerezo, Mater. Sci. Eng. A250 (1998) 158.

    Google Scholar 

  44. R. Asthana, P. K. Rohatgi and S. N. Tewari, in “Microstructure Formation during Solidification of Metal Matrix Composites,” editing by P. K. Rohatgi (The Minerals, Metal & Materials Society, TMS, Warrendale, PA, 1993) p.11.

    Google Scholar 

  45. D. Shangguan, S. Ahuja and D. M. Stefanescu, Metall. Trans. A. 23A (1992) 669.

    Google Scholar 

  46. (a)F. R. Juretzko, B. K. Dhindaw, D. M. Stefanescu, S. Sen and P. A. Curreri,Metall. Mater. Trans. A. 29A (1998) 1691; (b) D. M. STEFANESCU, F. R. JURETZKO, B. K. DHINDAW, A. CATALINA, S. SEN and P. A. CURRERI, ibid. 29A (1998) 1697.

    Google Scholar 

  47. L. A. Bendersky, A. J. McAlister and F. S. Biancaniello, ibid. 19A (1988) 2893.

    Google Scholar 

  48. Tongsri R, Ph.D thesis, University of London 2000.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tongsri, R., Minay, E.J., Thackray, R.P. et al. Microstructures and their stability in rapidly solidified Al-Fe-(V, Si) alloy powders. Journal of Materials Science 36, 1845–1856 (2001). https://doi.org/10.1023/A:1017584131357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017584131357

Keywords

Navigation