Skip to main content
Log in

Hydrothermal synthesis of lead doped barium titanate

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead doped barium titanate was synthesized hydrothermally at 363 K for 140 h. A molar formula of Ba(1−x)Pb x TiO3 was used, where x ranged between 0.025 and 0.75. The crystal structure, phase purity, and particle morphology was investigated by x-ray diffraction, Raman spectroscopy and electron microscopy. Under the synthesis conditions used, lead (Pb2+) was shown to incorporate into the perovskite structure when the dopant was kept below 20%. Above 20% Pb, other phases appeared and at 75% Pb no reaction to the perovskite structure took place. Unexpectedly, barium titanate containing from 2.5% Pb to 10% Pb appeared to be of orthorhombic symmetry. This was concluded by total pattern fitting of x-ray diffraction profiles and from splitting of the 222 reflection. The factors controlling the tendency for these materials to adopt orthorhombic symmetry as opposed to the more commonly observed tetragonal or cubic symmetries are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Business Communication Co. Inc., Norwalk, CT, American Ceramic Society Bulletin 76 (1997) 38.

    Google Scholar 

  2. H. F. Kay and P. Vousden, Phil. Mag. 40 (1949) 1019.

    Google Scholar 

  3. D. Hennings and S. Schreinemacher, Journal of the European Ceramic Society 9 (1992) 41.

    Google Scholar 

  4. I. Clark, T. Takeuchi, N. Ohtori and D. Sinclair, Journal of Materials Chemistry 9 (1999) 83.

    Google Scholar 

  5. R. Vivekananden and T. R. N. Kutty, Powder Technology 57 (1989) 181.

    Google Scholar 

  6. P. K. Dutta and J. R. Gregg, Chemistry of Materials 4 (1992) 843.

    Google Scholar 

  7. E. Shi, C. Xia, W. Zhong, B. Wang and C. Feng, J. Amer. Ceram. Soc. 80 (1997) 1567.

    Google Scholar 

  8. R. Vivekananden, S. Philip and T. R. N. Kutty Materials Research Bulletin 22 (1986) 99.

    Google Scholar 

  9. D. Hennings, G. Rosenstein and H. Schreinemacher, Journal of the European Ceramic Society 8 (1991) 107.

    Google Scholar 

  10. S. Wada, T. Suzuki and T. Noma, Journal of the Ceramic Society of Japan, International Edition 103 (1995) 1207.

    Google Scholar 

  11. Idem., ibid. International Edition 104 (1996) 364.

  12. K. Uchino, E. Sadanaga and T. Hirose, Communications of the American Ceramic Society 72 (1989) 1555.

    Google Scholar 

  13. X. Li and W. Shih, J. Amer. Ceram. Soc. 80 (1997) 2844.

    Google Scholar 

  14. J. O. Eckert, C. C. Hung-Houston, B. L. Gertsen, M. M. Lencka and R. E. Riman, ibid. 79 (1996) 2929.

    Google Scholar 

  15. A. NØrlund Christensen and S. E. Rasmussen, Acta Chemica Scandinavica 17 (1963) 845.

    Google Scholar 

  16. B. Begg, K. Finnie and E. Vance, J. Amer. Ceram. Soc. 79 (1996) 2666.

    Google Scholar 

  17. G. Arlt, D. Hennings and G. Dewith, J. Appl. Phys. 58 (1985) 1619.

    Google Scholar 

  18. M. H. Frey and D. A. Payne, Physical Review B 54 (1996) 3158.

    Google Scholar 

  19. G. Shirane, R. Pepinsky and B. C. Frazer, Acta Crystallographica 9 (1956) 131.

    Google Scholar 

  20. G. Shirane and A. Takeda, Journal of the Physical Society of Japan 6 (1951) 329.

    Google Scholar 

  21. Aerosizer User manual, Amherst Process Instruments Inc., Hadley, MA (1995).

  22. G. Burns and B. A. Scott, Solid State Communications 9 (1971) 813.

    Google Scholar 

  23. Idem., Physical Review B 7 (1973) 3088.

    Google Scholar 

  24. C. H. Perry and D. B. Hall, Physical Review Letters 15 (1965) 700.

    Google Scholar 

  25. L. H. Robins, D. L. Kaiser, L. D. Rotter, P. K. Schenck, G. T. Stauf and D. Rytz, J. Appl. Phys. 76 (1994) 7487.

    Google Scholar 

  26. Powdercell software version 2.1, Created by Werner Kraus and Gert Nolze at the Federal Institute for Material Research and Testing (BAM), Unter den Eichen 87, D-12205 Berlin, Germany (1999).

    Google Scholar 

  27. R. W. G. Wykoff, “Crystal Structures” (Interscience Publishers, New York, 1967) p. 405.

    Google Scholar 

  28. Topas P software version 1.0, DIFFRAC plus package, Bruker AXS GmbH, Written by Alan A. Coelho, Michael Jacob and Thomas Taut (1998).

  29. R. E. Riman, private communications.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vold, R.E., Biederman, R., Rossetti, G.A. et al. Hydrothermal synthesis of lead doped barium titanate. Journal of Materials Science 36, 2019–2026 (2001). https://doi.org/10.1023/A:1017582915853

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017582915853

Keywords

Navigation