Superluminal Motions? A Bird's-Eye View of the Experimental Situation

Abstract

In this article, after a theoretical introduction and a sketch of some related long-standing predictions, a bird's-eye view is presented—with the help of nine figures—of the various experimental sectors of physics in which Superluminal motions seem to appear (thus contributing support to those past predictions). In particular, a panorama is presented of the experiments with evanescent waves and/or tunnelling photons, and with the “localized Superluminal solutions” to the Maxwell equations (like the so-called X-shaped beams). The present review is brief, but is followed by a large enough bibliography to allow the interested reader deepening the preferred topic.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    See, e.g., O. M. Bilaniuk, V. K. Deshpande, and E. C. G. Sudarshan, Am. J. Phys. 30, 718 (1962).

    Google Scholar 

  2. 2.

    See E. Recami and R. Mignani, Riv. Nuovo Cimento 4, 209–290, E398 (1974), and references therein. Cf. also E. Recami, ed., Tachyons, Monopoles, and Related Topics (North-Holland, Amsterdam, 1978).

    Google Scholar 

  3. 3.

    E. Recami, Riv. Nuovo Cimento 9(6), 1–178 (1986), and references therein.

    Google Scholar 

  4. 4.

    See, e.g., E. Recami, in Annuario '73, Enciclopedia EST, E. Macorini, ed. (Mondadori, Milano, 1973), pp. 85–94; Nuovo Saggiatore 2(3), 20–29 (1986).

    Google Scholar 

  5. 5.

    E. Recami, in I Concetti della Fisica, F. Pollini and G. Tarozzi, eds. (Acc. Naz. Sc. Lett. Arti, Modena, 1993), pp. 125–138. E. Recami and W. A. Rodrigues, “Antiparticles from special relativity,” Found. Physics 12, 709–718 (1982); 13, E533 (1983).

    Google Scholar 

  6. 6.

    E. Recami, Found. Phys. 17, 239–296 (1987). See also Lett. Nuovo Cimento 44, 587-593 (1985); P. Caldirola and E. Recami, in Italian Studies in the Philosophy of Science, M. Dalla Chiara, ed. (Reidel, Boston, 1980), pp. 249–298. A. M. Shaarawi and I. M. Besieris, J. Phys. A: Math. Gen. 33, 7255–7263 (2000).

    Google Scholar 

  7. 7.

    Cf. M. Baldo Ceolin, “Review of neutrino physics,” invited talk at the XXIII Int. Symp. on Multiparticle Dynamics (Aspen, CO, Sept. 1993). E. W. Otten, Nucl. Phys. News 5, 11 (1995). From the theoretical point of view, see, e.g., E. Giannetto, G. D. Maccarrone, R. Mignani, and E. Recami, Phys. Lett. B 178, 115–120 (1986) and references therein. S. Giani, “Experimental evidence of superluminal velocities in astrophysics and proposed experiments,” CP458, in Space Technology and Applications International Forum 1999, M. S. El-Genk, ed. (A.I.P., Melville, 1999), pp. 881–888.

    Google Scholar 

  8. 8.

    See, e.g., J. A. Zensus and T. J. Pearson, eds., Superluminal Radio Sources (University Press, Cambridge, 1987).

    Google Scholar 

  9. 9.

    I. F. Mirabel and L. F. Rodriguez, “A superluminal source in the Galaxy,” Nature 371, 46 (1994) [with an editorial comment, “A galactic speed record,” by G. Gisler, at p. 18 of the same issue]; S. J. Tingay et al., “Relativistic motion in a nearby bright X-ray source,” Nature 374, 141 (1995).

    Google Scholar 

  10. 10.

    M. J. Rees, Nature 211, 46 (1966). A. Cavaliere, P. Morrison, and L. Sartori, Science 173, 525 (1971).

    Google Scholar 

  11. 11.

    E. Recami, A. Castellino, G. D. Maccarrone, and M. Rodonò, “Considerations about the apparent Superluminal expansions observed in astrophysics,” Nuovo Cimento B 93, 119 (1986). Cf. also R. Mignani and E. Recami, Gen. Relat. Grav. 5, 615 (1974).

    Google Scholar 

  12. 12.

    V. S. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992), and references therein, in particular T. E. Hartman, J. Appl. Phys. 33, 3427 (1962). See also V. S. Olkhovsky, E. Recami, F. Raciti, and A. K. Zaichenko, J. de Phys.-I 5, 1351–1365 (1995).

    Google Scholar 

  13. 13.

    See, e.g., Th. Martin and R. Landauer, Phys. Rev. A 45, 2611 (1992). R. Y. Chiao, P. G. Kwiat, and A. M. Steinberg, Physica B 175, 257 (1991). A. Ranfagni, D. Mugnai, P. Fabeni, and G. P. Pazzi, Appl. Phys. Lett. 58, 774 (1991); Y. Japha and G. Kurizki, Phys. Rev. A 53, 586 (1996). Cf. also G. Kurizki, A. E. Kozhekin, and A. G. Kofman, Europhys. Lett. 42, 499 (1998). G. Kurizki, A. E. Kozhekin, A. G. Kofman, and M. Blaauboer, paper delivered at the VII Seminar on Quantum Optics, Raubichi, Belarus (May 1998).

    Google Scholar 

  14. 14.

    E. Recami, F. Fontana, and R. Garavaglia, Int. J. Mod. Phys. A 15, 2793 (2000), and references therein.

    Google Scholar 

  15. 15.

    G. Nimtz and A. Enders, J. de Phys.-I 2, 1693 (1992); 3, 1089 (1993); 4, 1379 (1994); Phys. Rev. E 48, 632 (1993). H. M. Brodowsky, W. Heitmann, and G. Nimtz, J. de Phys.-I 4, 565 (1994); Phys. Lett. A 222, 125 (1996); 196, 154 (1994); G. Nimtz and W. Heitmann, Prog. Quant. Electr. 21, 81 (1997).

    Google Scholar 

  16. 16.

    A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, Phys. Rev. Lett. 71, 708 (1993), and references therein; Scient. Am. 269(2), 38 (1993). Cf. also Y. Japha and G. Kurizki, Phys. Rev. A 53, 586 (1996).

    Google Scholar 

  17. 17.

    A. Ranfagni, P. Fabeni, G. P. Pazzi, and D. Mugnai, Phys. Rev. E 48, 1453 (1993). Ch. Spielmann, R. Szipocs, A. Stingl, and F. Krausz, Phys. Rev. Lett. 73, 2308 (1994). Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851 (1997). V. Laude and P. Tournois, J. Opt. Soc. Am. B 16, 194 (1999).

    Google Scholar 

  18. 18.

    Scientific American (Aug. 1993); Nature (Oct. 21, 1993); New Scientist (Apr. 1995); Newsweek (19 June 1995).

  19. 19.

    Reference 3, p. 158 and pp. 116–117. Cf. also D. Mugnai, A. Ranfagni, R. Ruggeri, A. Agresti, and E. Recami, Phys. Lett. A 209, 227 (1995).

  20. 20.

    H. M. Brodowsky, W. Heitmann, and G. Nimtz, Phys. Lett. A 222, 125 (1996).

    Google Scholar 

  21. 21.

    A. P. L. Barbero, H. E. Hernández F., and E. Recami, “On the propagation speed of evanescent modes” [LANL Archives #physics/9811001] Phys. Rev. E 62, 8628 (2000), and references therein. See also E. Recami, H. E. Hernández F., and A. P. L. Barbero, Ann. Phys. (Leipzig) 7, 764–773 (1998). A. M. Shaarawi and I. M. Besieris, Phys. Rev. E 62(5), in press (Nov. 2000).

    Google Scholar 

  22. 22.

    G. Nimtz, A. Enders, and H. Spieker, in Waves and Particles in Light and Matter, A. van der Merwe and A. Garuccio, eds. (Plenum, New York, 1993); J. de Phys.-I 4, 565 (1994). See also A. Enders and G. Nimtz, Phys. Rev. B 47, 9605 (1993).

    Google Scholar 

  23. 23.

    V. S. Olkhovsky, E. Recami, and G. Salesi, “Tunneling through two successive barriers and the Hartman (Superluminal) effect” [Lanl Archives #quant-ph/0002022], Report INFN/FM_00/20 (Frascati, 2000), submitted for publication. S. Esposito, in preparation. See also A. M. Shaarawi and I. M. Besieris, J. Phys. A: Math. Gen. 33, 8559–8576 (2000).

    Google Scholar 

  24. 24.

    V. S. Olkhovsky, E. Recami, F. Raciti, and A. K. Zaichenko, Ref. 12, p. 1361. See also Refs. 3, 6 and E. Recami, F. Fontana, and R. Garavaglia, Ref. 14, p. 2807.

  25. 25.

    R. Y. Chiao, A. E. Kozhekin A. E., and G. Kurizki, Phys. Rev. Lett. 77, 1254 (1996). C. G. B. Garret and D. E. McCumber, Phys. Rev. A 1, 305 (1970).

    Google Scholar 

  26. 26.

    S. Chu and W. Wong, Phys. Rev. Lett. 48, 738 (1982). M. W. Mitchell and R. Y. Chiao, Phys. Lett. A 230, 133_138 (1997). G. Nimtz, Europ. Phys. J., B (to appear as a Rapid Note). L. J. Wang, A. Kuzmich, and A. Dogariu, Nature 406, 277 (2000). Further experiments are being developed, e.g., at Glasgow [D. Jaroszynski, private commun.] with X rays.

    Google Scholar 

  27. 27.

    G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B 36, 5 (1976).

    Google Scholar 

  28. 28.

    M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, Phys. Rev. A, in press.

  29. 29.

    H. Bateman, Electrical and Optical Wave Motion (University Press, Cambridge, 1915). R. Courant and D. Hilbert, Methods of Mathematical Physics (Wiley, New York, 1966), Vol. 2, p. 760. J. N. Brittingham, J. Appl. Phys. 54, 1179 (1983). R. W. Ziolkowski, J. Math. Phys. 26, 861 (1985). J. Durnin, J. Opt. Soc. 4, 651 (1987). A. O. Barut et al., Phys. Lett. A 143, 349 (1990); Found. Phys. Lett. 3, 303 (1990); Found. Phys. 22, 1267 (1992).

    Google Scholar 

  30. 30.

    J. A. Stratton, Electromagnetic Theory (McGraw–Hill, New York, 1941), p. 356. A. O. Barut et al., Phys. Lett. A 180, 5 (1993); 189, 277 (1994).

    Google Scholar 

  31. 31.

    R. Donnelly and R. W. Ziolkowski, Proc. Roy. Soc. London A 440, 541 (1993). I. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, J. Math. Phys. 30, 1254 (1989). S. Esposito, Phys. Lett. A 225, 203 (1997). J. Vaz and W. A. Rodrigues, Adv. Appl. Cliff. Alg. S-7, 457 (1997). 1134 Recami

    Google Scholar 

  32. 32.

    See also E. Recami and W. A. Rodrigues Jr., “A model theory for tachyons in two dimen-sions,” in Gravitational Radiation and Relativity, J. Weber and T. M. Karade, eds. (World Scientific, Singapore, 1985), pp. 151–203, and references therein.

    Google Scholar 

  33. 33.

    A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, J. Math. Phys. 31, 2511 (1990), Sec. VI; Nucl Phys. (Proc. Suppl.) B 6, 255 (1989); Phys. Lett. A 188, 218 (1994). See also: V. K. Ignatovich, Found. Phys. 8, 565 (1978) and A. O. Barut, Phys. Lett. A 171, 1 (1992); 189, 277 (1994); Ann. Fond. L. de Broglie, Jan. 1994; and “Quantum theory of single events, Localized de Broglie-wavelets, Schroedinger waves and classical trajectories,” preprint IC/90/99 (ICTP, Trieste, 1990).

    Google Scholar 

  34. 34.

    A. O. Barut, G. D. Maccarrone, and E. Recami, Nuovo Cimento A 71, 509 (1982). P. Caldirola, G. D. Maccarrone, and E. Recami, Lett. Nuovo Cim. 29, 241 (1980). E. Recami and G. D. Maccarrone, Lett. Nuovo Cim. 28, 151 (1980).

    Google Scholar 

  35. 35.

    J.-Y. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19 (1992).

    Google Scholar 

  36. 36.

    J.-Y. Lu and J. F. Greenleaf, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 441 (1992).

    Google Scholar 

  37. 37.

    E. Recami, Physica A 252, 586 (1998). J.-Y. Lu, J. F. Greenleaf, and E. Recami, “Limited diffraction solutions to Maxwell (and Schroedinger) equations” [Lanl Archives #physics/9610012], Report INFN/FM-96/01 (INFN, Frascati, Oct. 1996). See also R. W. Ziolkowski, I. M. Besieris, and A. M. Shaarawi, J. Opt. Soc. Am., A 10, 75 (1993); J. Phys. A: Math. Gen. 33, 7227–7254 (2000).

    Google Scholar 

  38. 38.

    P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135–4138 (1997).

    Google Scholar 

  39. 39.

    D. Mugnai, A. Ranfagni, and R. Ruggeri, Phys. Rev. Lett. 84, 4830 (2000).

    Google Scholar 

  40. 40.

    M. Z. Rached, E. Recami, and H. E. Hernández-Figueroa, in preparation. M. Z. Rached, E. Recami, and F. Fontana, “Localized Superluminal solutions to Maxwell equations propagating along a normal-sized waveguide” [Lanl Archives #physics/0001039], submitted for publication. I. M. Besieris, M. Abdel-Rahman, A. Shaarawi, and A. Chatzipetros, Progress in Electromagnetic Research (PIER) 19, 1–48 (1998).

  41. 41.

    J.-Y. Lu, H.-H. Zou, and J. F. Greenleaf, Ultrasound in Medicine and Biology 20, 403 (1994); Ultrasonic Imaging 15, 134 (1993).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Recami, E. Superluminal Motions? A Bird's-Eye View of the Experimental Situation. Foundations of Physics 31, 1119–1135 (2001). https://doi.org/10.1023/A:1017582525039

Download citation

Keywords

  • Experimental Sector
  • Interested Reader
  • Present Review
  • Maxwell Equation
  • Experimental Situation