Skip to main content
Log in

Cavitation instability in rubber with consideration of failure

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Cavitation instability in rubber is investigated by examining spherical void expansion in rubber particles under dead-load traction conditions. Spherical symmetry is assumed to simplify the governing equations in order to gain qualitative understanding of cavitation phenomenon. A simple strain failure criterion for rubber is proposed to demonstrate the effect of rubber failure on cavitation phenomenon. When the strain failure criterion is considered, the results show that, as in neo-Hookean materials, critical cavitation stresses exist for Mooney-Rivlin materials and for nonlinearly elastic materials characterized by a third-order strain energy function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.

    Google Scholar 

  2. R. A. Pearson and A. F. Yee, ibid. 21 (1986) 2475.

    Google Scholar 

  3. Idem., ibid. 26 (1991) 3828.

    Google Scholar 

  4. A. F. Yee, D. Li and X. Li, ibid. 28 (1993) 6392.

    Google Scholar 

  5. H.-J. Sue and A. F. Yee, Polymer Engineering and Science 36 (1996) 2320.

    Google Scholar 

  6. A. Lazzeri and C. B. Bucknall, J. Mater. Sci. 28 (1993) 6799.

    Google Scholar 

  7. Idem., Polymer 36 (1995) 2895.

    Google Scholar 

  8. C. B. Bucknall and A. Lazzeri, J. Mater. Sci. 35 (2000) 427.

    Google Scholar 

  9. Y. Huang and A. J. Kinloch, ibid. 27 (1992) 2753.

    Google Scholar 

  10. A. C. Steenbrink, E. Van Der Giessen and P. D. Wu, Journal of the Mechanics and Physics of Solids 45 (1997) 405.

    Google Scholar 

  11. A. C. Steenbrink and E. Van Der Giessen, ibid. 47 (1999) 843.

    Google Scholar 

  12. X.-H. Chen and Y.-W. Mai, J. Mater. Sci. 34 (1999) 2139.

    Google Scholar 

  13. B. J. P. Jansen, S. Rastogi, H. E. H. Meijer and P. J. Lemstra, Macromolecules 32 (1999) 6283.

    Google Scholar 

  14. H.-Y. Jeong and J. Pan, Polymer Engineering and Science 36 (1996) 2306.

    Google Scholar 

  15. W. J. Chang and J. Pan, International Journal of Fracture 88 (1997) 61.

    Google Scholar 

  16. A. Al-Abduljabbar and J. Pan, Polymer Engineering and Science 39 (1999) 662.

    Google Scholar 

  17. A. N. Gent and P. B. Lindley, Proceedings of the Royal Society of London A249 (1959) 195.

    Google Scholar 

  18. M. F. Ashby, F. J. Blunt and M. Bannister, Acta Metallurgica 37 (1989) 1847.

    Google Scholar 

  19. R. Hill, “The Mathematical Theory of Plasticity” (Clarendon Press, Oxford, 1950).

    Google Scholar 

  20. J. M. Ball, Philosophical Transactions of the Royal Society of London A306 (1982) 557.

    Google Scholar 

  21. C. O. Horgan and R. Abeyaratne, Journal of Elasticity 16 (1986) 189.

    Google Scholar 

  22. C. O. Horgan and D. A. Polignone, Applied Mechanics Reviews 48 (1995) 471.

    Google Scholar 

  23. Y. Huang, J. W. Hutchinson and V. Tvergaard, Journal of the Mechanics and Physics of Solids 39 (1991) 223.

    Google Scholar 

  24. V. Tvergaard, Y. Huang and J. W. Hutchinson, European Journal of Mechanics, A/Solids 11 (1992) 215.

    Google Scholar 

  25. H. Hou and R. Abeyaratne, Journal of the Mechanics and Physics of Solids 40 (1992) 571.

    Google Scholar 

  26. M. L. Williams and R. A. Schapery, International Journal of Fracture Mechanics 1 (1965) 64.

    Google Scholar 

  27. A. N. Gent and C. Wang, J. Mater. Sci. 26 (1991) 339.

    Google Scholar 

  28. B. G. Kao and L. Razgunas, On the determination of strain energy functions of rubbers. SAE paper number 860816, Society of Automotive Engineers, 1986.

  29. A. G. James, A. Green and G. M. Simpson, J. Appl. Polym. Sci. 19 (1975) 2033.

    Google Scholar 

  30. A. G. James and A. Green, ibid. 19 (1975) 2319.

    Google Scholar 

  31. C. Truesdell and W. Noll, in “Encyclopedia of Physics III/3,” edited by S. Fluegge (Springer-Verlag, Berlin, 1965).

    Google Scholar 

  32. W. Goldberg, PhD thesis, Purdue University, 1967.

  33. K. N. Morman, Jr., B. G. Kao and J. C. Nagtegaal, Fourth International Conference on Vehicle Structural Mechanics, Detroit, Michigan, 1981, pp. 83–92.

  34. J. T. Oden, “Finite Elements of Nonlinear Continua” (McGraw-Hill, New York, 1972).

    Google Scholar 

  35. M.-S. Chou-Wang and C. O. Horgan, International Journal of Solids and Structures 25 (1989) 1239.

    Google Scholar 

  36. D. A. Polignone and C. O. Horgan, Journal of Elasticity 33 (1993) 27.

    Google Scholar 

  37. V. Tvergaard and A. Needleman, Acta Metallurgica et Materialia 32 (1984) 157.

    Google Scholar 

  38. M. F. Kanninen and C. F. Popelar, “Advanced Fracture Mechanics” (Oxford University Press, New York, 1985).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, W.J., Pan, J. Cavitation instability in rubber with consideration of failure. Journal of Materials Science 36, 1901–1909 (2001). https://doi.org/10.1023/A:1017581420879

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017581420879

Keywords

Navigation