Skip to main content
Log in

Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The influence of several ethoxylated additives (ethyleneglycol and polyethyleneglycol polymers of different molecular weights) on the nucleation, growth mechanism and morphology of zinc electrodeposited from an acidic chloride bath is reported. The electrochemical study was carried out using cyclic voltammetry, inversion potential and chronoamperometric techniques. The dimensionless graphs model was applied to analyse the nucleation process and the results showed that the studied additives have a blocking effect on the electrodeposition of zinc. This effect occurs in the first stages of the nucleation process and is dependent on the molecular weight of the additive. Changes induced by the presence of additives in the morphology and grain size of the deposits were observed using SEM analysis. Results show that the presence of additives modifies the nucleation process and determines the final properties of the deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.H. Safranek (Ed.), ‘The Properties of Electrodeposited Metals and Alloys’ (AESF, Florida, 1986).

    Google Scholar 

  2. J.W. Dini, ‘Electrodeposition. The Material Science of Coatings and Substrates’ (Noyes Publications, New Jersey, 1995).

    Google Scholar 

  3. D.A. Vermilyea, J. Electrochem. Soc. 106 (1995) 66.

    Google Scholar 

  4. Majid R. Kalantary, Plat. Surf. Finish. 80 (June 1994) 80.

    Google Scholar 

  5. D. Stoychev and S. Rashkov, Commun. Dep. Chem. Bulg. Acad. Sci. 9(4) (1976) 618.

    Google Scholar 

  6. A. Aragón, M.G. Figueroa and R.E. Gana, J. Appl. Electrochem. 22 (1992) 558.

    Google Scholar 

  7. D. Stoychev, I. Vitanova, T. Vitanov and S. Rashkov, Surf. Technol. 7 (1978) 427.

    Google Scholar 

  8. M. Wünsche, R.J. Nichols, R. Schumacher. W. Beckman and H. Meyer, Electrochim. Acta 38 (1993) 647.

    Google Scholar 

  9. M. Pushpavanam and K. Balakrishnam, J. Appl. Electrochem. 26 (1996) 283.

    Google Scholar 

  10. C. Karwas and T. Hepel, J. Electrochem. Soc. 136 (1989) 1672.

    Google Scholar 

  11. R. Fratesi, G. Roventi, G. Giuliani and C.R. Tomachuk, J. Appl. Electrochem. 27 (1997) 1088.

    Google Scholar 

  12. H. Ruiz, G. Trejo, R. Ortega Borges and Y. Meas V., Memorias XIII Congreso de la Sociedad Iberoamericana de Electroquímica (1998) 580.

  13. A. Rojas and I. González, Anal. Chim. Acta 187 (1986) 279.

    Google Scholar 

  14. A. Rojas-Hernández, M.T. Ramírez and I. González, Anal. Chim. Acta 278 (1993) 321.

    Google Scholar 

  15. A. Rojas-Hernández, M.T. Ramírez and I. González, Anal. Chim. Acta 278 (1993) 335.

    Google Scholar 

  16. M. Smith and A.E. Martell, ‘Critical Stability Constants’, Vol. 4 (Plenum Press, New York, 1979).

    Google Scholar 

  17. G. Trejo, R. Ortega Borges, Y. Meas V., E. Chainet, B. Nguyen and P. Ozil, J. Electrochem. Soc. 14 (1998) 4090.

    Google Scholar 

  18. A.J. Bard and L.R. Faulkner, ‘Electrochemical Methods: Fundamental and Applications’ (J. Wiley & Sons, New York, 1980).

    Google Scholar 

  19. G.J. Hills, D.J. Hills, D.J. Schiffrin and J. Thompson, Electrochim. Acta 19 (1974) 657.

    Google Scholar 

  20. S. Fletcher, Electrochim. Acta 28 (1983) 917.

    Google Scholar 

  21. S. Fletcher, C.S. Halliday, D. Gates, M. Westcott, T. Lwin and G. Nelson, J. Electroanal. Chem. 159 (1983) 267.

    Google Scholar 

  22. B.R. Scharifker and G. Hills, Electrochim. Acta 28 (1983) 879.

    Google Scholar 

  23. G. Gunawardena, G. Hills and I. Montenegro, J. Electroanal. Chem. 184 (1985) 371.

    Google Scholar 

  24. G. Gunawardena, G. Hills, I. Montenegro and B. Scharifcker, J. Electroanal. Chem. 138 (1982) 225.

    Google Scholar 

  25. B.R. Scharifker and J. Mostany, J. Electroanal. Chem. 177 (1984) 13.

    Google Scholar 

  26. P.M. Rigano, C. Mayer and T. Chierchie, J. Electroanal. Chem. 248 (1988) 219.

    Google Scholar 

  27. M. Palomar-Pardave, I. González, A.B. Soto and E.M. Arce, J. Electroanal. Chem. 443 (1998) 125.

    Google Scholar 

  28. M. Sánchez Cruz, F. Alonso and J.M. Palacios, J. Appl. Electrochem. 23 (1993) 364.

    Google Scholar 

  29. G. Trejo, A.F. Gil and I. González, J. Electrochem. Soc. 142 (1995) 3404.

    Google Scholar 

  30. G. Barceló, M. Sarret, C. Müller and J. Pregonas, Electrochim. Acta 43 (1998) 13.

    Google Scholar 

  31. H. Yan, J. Downes, P.J. Boden and S.J. Harris, J. Electrochem. Soc. 143 (1996) 1577.

    Google Scholar 

  32. E. Michailova, I. Vitanova, D. Stoychev and A. Mielchev, Electrochim. Acta 38 (1993) 2455.

    Google Scholar 

  33. E. Michailova, I. Vitanova, D. Stoychev and A. Mielchev, J. Electroanal. Chem. 366 (1994) 195.

    Google Scholar 

  34. P.C. Fazio, E.L. Gutman, S.L. Kauffman, J.G. Kramer, C.M. Leinweber, V.A. Mayer, P.A. McGee (Eds), ASTM G5. Standard reference test for making potentiostatic and potentiodynamic anodic polarization measurementes, in ‘Annual Book of ASTM Standards, Vol. 03.02 Wear and Erosion, Metal Corrosion’ (ASTM, Philadelphia, 1993), p. 71.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trejo, G., Ruiz, H., Borges, R.O. et al. Influence of polyethoxylated additives on zinc electrodeposition from acidic solutions. Journal of Applied Electrochemistry 31, 685–692 (2001). https://doi.org/10.1023/A:1017580025961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017580025961

Navigation