Flat Spacetime Gravitation with a Preferred Foliation


Paralleling the formal derivation of general relativity as a flat spacetime theory, we introduce in addition a preferred temporal foliation. The physical interpretation of the formalism is considered in the context of 5-dimensional “parametrized” and 4-dimensional preferred frame contexts. In the former case, we suggest that our earlier proposal of unconcatenated parametrized physics requires that the dependence on τ be rather slow. In the 4-dimensional case, we consider and tentatively reject several areas of physics that might require a preferred foliation, but find a need for one in the process (“flowing”) theory of time. We then suggest why such a foliation might reasonably be unobservable.

This is a preview of subscription content, log in to check access.


  1. 1.

    S. Gupta, “Gravitation and electromagnetism,” Phys. Rev. 96, 1683 (1954).

    Google Scholar 

  2. 2.

    R. Kraichnan, “Special-relativistic derivation of generally covariant gravitation theory,” Phys. Rev. 98, 1118 (1955); also “Possibility of unequal gravitational and inertial masses,” Phys. Rev. 101, 482 (1956).

    Google Scholar 

  3. 3.

    W. Thirring, “An alternative approach to the theory of gravitation,” Ann. Phys. (N.Y.) 16, 96 (1961).

    Google Scholar 

  4. 4.

    L. Halpern, “On the structure of the gravitation self interaction,” Bull. Cl. Sci. Acad. R. Belg., 5e serie 49, 226 (1963).

    Google Scholar 

  5. 5.

    R. P. Feynman, F. B. Morinigo, and W. G. Wagner, Feynman Lectures on Gravitation, B. Hatfield, ed. (Addison–Wesley, Reading, Mass., 1995).

    Google Scholar 

  6. 6.

    V. Ogievetsky and I. Polubarinov, “Interacting field of spin 2 and the Einstein equations,” Ann. Phys. (N.Y.) 35, 167 (1965).

    Google Scholar 

  7. 7.

    S. Deser, “Self-interaction and gauge invariance,” Gen. Rel. Gravit. 1, 9 (1970).

    Google Scholar 

  8. 8.

    J. B. Pitts and W. C. Schieve, “Slightly bimetric gravitation,” submitted.

  9. 9.

    S. V. Babak and L. P. Grishchuk, “The energy-momentum tensor for the gravitational field,” Phys. Rev. D 61, 024038 (2000).

    Google Scholar 

  10. 10.

    J. R. Fanchi, Parametrized Relativistic Quantum Theory (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  11. 11.

    M. C. Land and L. P. Horwitz, “Green's functions for off-shell electromagnetism and spacelike correlations,” Found. Phys. 21, 299 (1991).

    Google Scholar 

  12. 12.

    M. C. Land and L. P. Horwitz, “The Lorentz force and energy-momentum for off-shell electromagnetism,” Found. Phys. Lett. 4, 61 (1991).

    Google Scholar 

  13. 13.

    M. C. Land, “Particles and events in classical off-shell electrodynamics,” Found. Phys. 27, 19 (1997).

    Google Scholar 

  14. 14.

    N. Shnerb and L. P. Horwitz, “Canonical quantization of four-and five-dimensional U(1) gauge theories,” Phys. Rev. A 48, 4068 (1993).

    Google Scholar 

  15. 15.

    M. C. Land, N. Shnerb, and L. P. Horwitz, “On Feynman's approach to the foundations of gauge theory,” J. Math. Phys. 36, 3263 (1995).

    Google Scholar 

  16. 16.

    L. P. Horwitz, “On the definition and evolution of states in relativistic classical and quantum mechanics,” Found. Phys. 22, 421 (1992).

    Google Scholar 

  17. 17.

    D. Saad, L. P. Horwitz, and R. I. Arshansky, “Off-shell electromagnetism in manifestly covariant relativistic quantum mechanics,” Found. Phys. 19, 1125 (1989).

    Google Scholar 

  18. 18.

    L. P. Horwitz and C. Piron, “Relativistic dynamics,” Helv. Phys. Acta 46, 316 (1973).

    Google Scholar 

  19. 19.

    L. P. Horwitz, R. I. Arshansky, and A. C. Elitzur, “On the two aspects of time: The distinction and its implications,” Found. Phys. 18, 1159 (1988).

    Google Scholar 

  20. 20.

    R. Arshansky, L. P. Horwitz, and Y. Lavie, “Particles vs. events: The concatenated structure of world lines in relativistic quantum mechanics,” Found. Phys. 13, 1167 (1983).

    Google Scholar 

  21. 21.

    J. Frastai and L. P. Horwitz, “Off-shell fields and Pauli–Villars regularization,” Found. Phys. 25, 1495 (1995).

    Google Scholar 

  22. 22.

    J. B. Pitts and W. C. Schieve, “On parametrized general relativity,” Found. Phys. 28, 1417 (1998).

    Google Scholar 

  23. 23.

    J. B. Pitts and W. C. Schieve, “On the form of parametrized gravitation in flat spacetime,” Found. Phys. 29, 1977 (1999).

    Google Scholar 

  24. 24.

    C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, New York, 1973).

    Google Scholar 

  25. 25.

    P. G. O. Freund, A. Maheshwari, and E. Schonberg, “Finite-range gravitation,” Ap. J. 157, 857 (1969).

    Google Scholar 

  26. 26.

    J. L. Anderson, Principles of Relativity Physics (Academic, New York, 1967).

    Google Scholar 

  27. 27.

    J. L. Cook, “Solutions of the relativistic two-body problem,” Aust. J. Phys. 25, 117 (1972).

    Google Scholar 

  28. 28.

    R. Wald, General Relativity (University of Chicago Press, Chicago, 1984).

    Google Scholar 

  29. 29.

    W. G. Unruh, “Unimodular theory of canonical quantum gravity,” Phys. Rev. D 40, 1048 (1989).

    Google Scholar 

  30. 30.

    W. G. Unruh and R. M. Wald, “Time and the interpretation of canonical quantum gravity,” Phys. Rev. D 40, 2598 (1989).

    Google Scholar 

  31. 31.

    One of us (J.B.P.) thanks L. P. Horwitz for correspondence on this matter

  32. 32.

    One of us (J.B.P.) thanks R. Matzner and M. Choptuik for making this point and D. Salisbury for related thoughts.

  33. 33.

    P. Miller, “On ‘becoming’ as a fifth dimension,” in Physics and the Ultimate Significance of Time, D. R. Griffin, ed. (SUNY Press, Albany, 1986).

    Google Scholar 

  34. 34.

    L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev. Lett. 83, 4690 (1999).

    Google Scholar 

  35. 35.

    “Physics update: An alternative to compactification,” Physics Today 12, 9 (1999).

  36. 36.

    C. Piron and F. Reuse, “The relativistic two body problem,” Helv. Phys. Acta 48, 631 (1975).

    Google Scholar 

  37. 37.

    M. A. Trump and W. C. Schieve, Classical Relativistic Many-Body Dynamics (Kluwer Academic, Dordrecht, 1999).

    Google Scholar 

  38. 38.

    R. G. Cawley, “Observer theories based on Stueckelberg equations of motion,” Int. J. Theor. Phys. 3, 483 (1970).

    Google Scholar 

  39. 39.

    J. P. Hsu and T. Y. Shi, “Hamiltonians within the relativistic dynamics with a scalar evolution variable,” Phys. Rev. D 26, 2745 (1982).

    Google Scholar 

  40. 40.

    J. L. Cook, “General relativity in the equal proper time formalism,” Aust. J. Phys. 25, 469 (1972).

    Google Scholar 

  41. 41.

    F. Selleri, “The relativity principle and the nature of time,” Found. Phys. 27, 1527 (1997).

    Google Scholar 

  42. 42.

    I. Schmelzer, “General ether theory,” Los Alamos Preprints, xxx.lanl.gov, gr-qc–0001101.

  43. 43.

    M. Ferrero and E. Santos, “Empirical consequences of the scientific construction: The program of local hidden-variables theories in quantum mechanics,” Found. Phys. 27, 765 (1997).

    Google Scholar 

  44. 44.

    L. E. Szabo and A. Fine, “A local hidden variable theory for the GHZ experiment,” Los Alamos Preprints, xxx.lanl.gov, quant-ph–0007102.

  45. 45.

    M. Genovese, G. Brida, C. Novero, and E. Predazzi, “Experimental test of local realism using non-maximally entangled states,” Los Alamos Preprints, xxx.lanl.gov, quant-ph– 0009067.

  46. 46.

    C. H. Brans, “Bell's theorem does not eliminate fully causal hidden variables,” Int. J. Theor. Phys. 27, 219 (1988).

    Google Scholar 

  47. 47.

    T. Durt, “Three interpretations of the violations of Bell's inequalities,” Found. Phys. 27, 415 (1997).

    Google Scholar 

  48. 48.

    T. Durt, “Why God might play dice,” Int. J. Theor. Phys. 35, 2271 (1996).

    Google Scholar 

  49. 49.

    J. Bell, in The Ghost in the Atom, P. C. W. Davies and J. R. Brown, eds. (University Press, Cambridge, 1986).

    Google Scholar 

  50. 50.

    R. K. Clifton, M. L. G. Redhead, and J. N. Butterfield, “Generalization of the Greenberger–Horne–Zeilinger algebraic proof of nonlocality,” Found. Phys. 21, 149 (1991).

    Google Scholar 

  51. 51.

    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (University Press, Cambridge, 1987).

    Google Scholar 

  52. 52.

    P. Van Inwagen, An Essay on Free Will (University Press, Oxford, 1986). Though an advocate of free will, Van Inwagen finds no way to answer this “Mind” argument.

    Google Scholar 

  53. 53.

    R. Kane, The Significance of Free Will (University Press, Oxford, 1998). Kane, a defender of free will, wrestles with this argument through much of the book.

    Google Scholar 

  54. 54.

    J. Edwards, The Freedom of the Will (Soli Deo Gloria, Morgan, Pennsylvania, 1996). Reprint of (Thomas Nelson, London, 1845).

    Google Scholar 

  55. 55.

    B. Metzger, The New Testament: Its Background, Growth, and Content, 2nd edn. (Abingdon, Nashville, 1983). Metzger cites Josephus.

    Google Scholar 

  56. 56.

    C. J. Isham, “Canonical quantum gravity and the problem of time,” Los Alamos Preprints, xxx.lanl.gov, gr-qc–9210011.

  57. 57.

    D. Boulware and S. Deser, “Can gravitation have a finite range?” Phys. Rev. D 6, 3368 (1972).

    Google Scholar 

  58. 58.

    M. Visser, “Mass for the graviton,” Gen. Rel. Gravit. 30, 1717 (1998).

    Google Scholar 

  59. 59.

    R. Penrose, “On Schwarzschild causality––a problem for “Lorentz covariant” general relativity,” in Essays in General Relativity––A Festschrift for Abraham Taub, F. J. Tipler, ed. (Academic, New York, 1980).

    Google Scholar 

  60. 60.

    T. Jacobson and D. Mattingly, “Gravity with a dynamical preferred frame,” Los Alamos Preprints, xxx.lanl.gov, gr-qc–0007031.

  61. 61.

    Q. Smith, “Problems with the new tenseless theory of time,” Phil. Studies 52, 371 (1987).

    Google Scholar 

  62. 62.

    M. Dorato, Time and Reality: Spacetime Physics and the Objectivity of Temporal Becoming (CLUEB, Bologna, 1995).

    Google Scholar 

  63. 63.

    C. J. Isham and J. C. Polkinghorne, “The debate over the block universe,” in Quantum Cosmology and the Laws of Nature: Scientific Perspectives on Divine Action, 2nd edn., R. J. Russell, N. Murphey, and C. J. Isham, eds. (Vatican Observatory, Vatican City State, and the Center for Theology and the Natural Sciences, Berkeley, 1999).

    Google Scholar 

  64. 64.

    R. M. Chisholm and D. W. Zimmerman, “Theology and tense,” Nouûs 31, 262 (1997).

    Google Scholar 

  65. 65.

    J. Perry, “The problem of the essential indexical,” Nouûs 13, 3 (1979).

    Google Scholar 

  66. 66.

    D. H. Mellor, Real Time (University Press, Cambridge, 1981).

    Google Scholar 

  67. 67.

    Q. Smith, Language and Time (Oxford University Press, New York, 1993).

    Google Scholar 

  68. 68.

    W. L. Craig, lectures given at Talbott Seminary, Biola University (1995).

  69. 69.

    W. L. Craig, The Tensed Theory of Time, and The Tenseless Theory of Time (Synthese Library, Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  70. 70.

    W. L. Craig, Time and the Metaphysics of Relativity, and God, Time and Eternity (Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  71. 71.

    A. N. Prior, “Thank goodness that's over,” Philosophy 34, 12 (1959).

    Google Scholar 

  72. 72.

    A. N. Prior, “The formalities of omniscience,” Philosophy 37, 114 (1962).

    Google Scholar 

  73. 73.

    D. Lewis, “Attitudes de dicto and de se,” Phil. Rev. 88, 513 (1979).

    Google Scholar 

  74. 74.

    N. Wolterstorff, “God everlasting,” in Contemporary Philosophy of Religion, S. M. Cahn and D. Shatz. (Oxford University Press, New York, 1982).

    Google Scholar 

  75. 75.

    N. Kretzmann, “Omniscience and immutability,” J. Phil. 63, 409 (1966).

    Google Scholar 

  76. 76.

    D. H. Mellor, “ 'Thank goodness that' over',” Ratio 23, 20 (1981). Mellor is attempting to refute this line of argument.

    Google Scholar 

  77. 77.

    H. Reichenbach, The Direction of Time (University of California Press, Berkeley, 1956).

    Google Scholar 

  78. 78.

    D. R. Griffin, Physics and the Ultimate Significance of Time (SUNY Press, Albany, 1986).

    Google Scholar 

  79. 79.

    T. Maudlin, Quantum Non-Locality and Relativity: Metaphysical Intimations of Modern Physics (Blackwell, Oxford, 1994).

    Google Scholar 

  80. 80.

    F. Shojai and M. Golshani, “On the general covariance in Bohmian quantum gravity,” Int. J. Mod. Phys. A 13, 2135 (1998).

    Google Scholar 

  81. 81.

    S. Goldstein and S. Teufel, “Quantum spacetime without observers: Ontological clarity and the conceptual foundations of quantum gravity,” Los Alamos Preprints, xxx.lanl.gov, quant-ph–9902018, to appear in Physics Meets Philosophy at the Planck Scale, C. Callender and N. Huggett, eds. (Cambridge University Press, forthcoming).

  82. 82.

    J. Butterfield and C. J. Isham, “Spacetime and the philosophical challenge of quantum gravity,” Los Alamos Preprints, xxx.lanl.gov, gr-qc–9903072, to appear in Physics Meets Philosophy at the Planck Scale, C. Callender and N. Huggett, eds. (Cambridge University Press, forthcoming).

  83. 83.

    One of us (J.B.P.) thanks C. Rovelli for stimulating correspondence on this issue.

  84. 84.

    H. P. Stapp, “Einstein time and process time,” in Physics and the Ultimate Significance of Time, D. R. Griffin, ed. (SUNY Press, Albany, 1986).

    Google Scholar 

  85. 85.

    J. T. Wilcox, “A question from physics for certain theists,” J. Religion 41, 293 (1961).

    Google Scholar 

  86. 86.

    L. S. Ford, “Is process theism consistent with relativity theory?” J. Religion 48, 124 (1968).

    Google Scholar 

  87. 87.

    R. G. Gruenler, The Inexhaustible God (Baker, Grand Rapids, 1983).

    Google Scholar 

  88. 88.

    W. L. Craig, “God and real time,” Religious Studies 26, 335 (1990).

    Google Scholar 

  89. 89.

    C. Møller, The Theory of Relativity (Clarendon, Oxford, 1952).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pitts, J.B., Schieve, W.C. Flat Spacetime Gravitation with a Preferred Foliation. Foundations of Physics 31, 1083–1104 (2001). https://doi.org/10.1023/A:1017578424131

Download citation


  • General Relativity
  • Parametrized Physic
  • Physical Interpretation
  • Temporal Foliation
  • Formal Derivation