Skip to main content
Log in

Physical-chemical influences on vernal zooplankton community structure in small lakes and wetlands of Wisconsin, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We sampled zooplankton communities from 54 small water bodies distributed throughout Wisconsin to evaluate whether a ‘snap-shot’ of zooplankton community structure during early spring could be used for the purpose of differentiating lakes from wetlands. We collected a single set of zooplankton and water chemistry data during a one-month time window (synchronized from south to north across the state) from an open water site in each basin as a means to minimize and standardize sampling effort and to minimize cascading effects arising from predator–prey interactions with resident and immigrant aquatic insect communities. We identified 53 taxa of zooplankton from 54 sites sampled across Wisconsin. There was an average of 6.83 taxa per site. The zooplankton species were distributed with a great deal of independence. We did not detect significant correlations between number of taxa and geographic region or waterbody size. There was a significant inverse correlation between number of taxa and the concentration of calcium ion, alkalinity and conductivity. One pair of taxa, Lynceus brachyurus and Chaoborus americanus, showed a significant difference in average duration of sites of their respective occurrence. All other pairs of taxa had no significant difference in average latitude, waterbody surface area, total phosphorus, total Kjeldahl nitrogen, alkalinity, conductivity, calcium ion, sulfate, nitrate, silicate or chloride. Taxa were distributed at random among the sites – there were no statistically significant pairs of taxa occurring together or avoiding each other. Multivariate analysis of zooplankton associations showed no evidence of distinct associations that could be used to distinguish lakes from wetlands. Zooplankton community structure appears to be a poor tool for distinguishing between lakes and wetlands, especially at the relatively large scale of Wisconsin (dimension of about 500 km). The data suggest that a small body of water in Wisconsin could be classified as a wetland if it persists in the spring and summer for only about 4 months, and if it is inhabited by Lynceus brachyurus, Eubranchipus bundyi, and if Chaoborus americanus and Chydorus brevilabris are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (American Public Health Association, American Water Works Association, and Water Environment Federation), 1992. Standard methods for the examination of water and wastewater, 18th Edition.

  • Arnott, S. E. & M. J. Vanni, 1993. Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74: 2361–2380.

    Google Scholar 

  • Balcer, M. D., N. L. Korda, S. I. Dodson, 1984. Zooplankton of the Great Lakes: A Guide to the Identification and Ecology of the Common Crustacean Species. Univ. of Wisc. Press: Madison.

    Google Scholar 

  • Beaver, J. R., A. M. Miller-Lemke & J. K. Acton, 1999. Midsummer zooplankton assemblages in four types of wetlands in the Upper Midwest, U.S.A. Hydrobiolgia 380: 209–220.

    Google Scholar 

  • Berner, D. B., 1987. Significance of head and carapace pores in Ceriodaphnia (Crustacea, Cladocera). Hydrobiologia 145: 75–84.

    Google Scholar 

  • Birge, E. A., 1892. Notes and list of Crustacea Cladocera from Madison, Wisconsin. Trans. Wisconsin Acad. Sci. Arts Lett. 9: 275–317.

    Google Scholar 

  • Birge, E. A. & C. Juday, 1922. The inland lakes of Wisconsin. The plankton. I. Its quantity and chemical composition. Wisconsin Geol. Nat. Hist. Surv., Bull. 64, 222 + ix pp.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150(3692): 28–35.

    Google Scholar 

  • Cook, E. F., 1954. The Nearctic Chaoborinae (Diptera: Culicidae). Univ. Minn. Ag. Expt. Station. Tech. Bull. 218: 2–102.

    Google Scholar 

  • Cowardin, L.M., V. Carter, F. C. Golet & E. T. LaRoe, 1979. Classification of wetlands and deep water habitats of the United States. U. S. Dep. Interior, Fish andWildlife Ser. Rep. FWS/OBS-79/31. 131 pp.

  • Curtis, J. T., 1959. The Vegetation of Wisconsin. University of Wisconsin Press, Madison. 657 pp.

    Google Scholar 

  • De Melo, R. & P. D. N. Hebert, 1994. A taxonomic reevaluation of North American Bosminidae. Can. J. Zool. 72: 1808–1825.

    Google Scholar 

  • Dodson, S. I., 1979. Body size patterns in arctic and temperate zooplankton. Limnol. Oceanogr. 24: 940–949.

    Google Scholar 

  • Dodson, S., 1992. Predicting crustacean zooplankton species richness. Limnol. Oceanogr. 37(4): 848–856.

    Google Scholar 

  • Dodson, S., 1994. Morphological analysis of Wisconsin (U.S.A.) species of the Acanthocyclops vernalis group (Copepoda: Cyclopoida). J. Crust. Biol. 14: 113–131.

    Google Scholar 

  • Dodson, S. I. & D. G. Frey, 1991 ‘The Cladocera and other Branchiopoda’ In Thorpe, J. E. & A. P. Covich (eds), Ecology and Systematics of North American Freshwater Invertebrates. Academic Press.

  • Dumont, H. J. & J. Pensaert, 1983. A revision of the Scapholeberinae (Crustacea: Cladocera). Hydrobiologia 100: 3–45.

    Google Scholar 

  • Dodson, S. I. & M. Silva-Briano, 1996. Crustacean zooplankton species richness and associations in reservoirs and ponds of Aguascalientes State, Mexico. Hydrobiologia 325: 163–172

    Google Scholar 

  • Finley, R. W., 1975. Geography of Wisconsin. University of Wisconsin Press. Madison, WI.

    Google Scholar 

  • Goulden, C. E., 1968. The systematics and evolution of the Moinidae. Trans. am. Phil. Soc. NS. 58(6): 1–101.

    Google Scholar 

  • Grieg-Smith. P., 1983. Quantitative plant ecology. Studies in ecology. Volume 9. University of California Press, Berkeley, CA. GS+, 2000. GS+ Geostatistics for the Environmental Sciences by Gamma Design Software. Version 5.

    Google Scholar 

  • Hann, B. J., 1995. Genetic variation in Simocephalus (Anomopoda: Daphniidae) in North America: Patterns and consequences. Hydrobiologia 307: 9–14.

    Google Scholar 

  • Hairston, N. G. Jr., 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnol. Oceanogr. 41(5): 1087–1092.

    Google Scholar 

  • Hebert, P. D. N., 1995. The Daphnia of North America – An illustrated fauna. Compact Disk.

  • Hebert, P. D. N., 1997. Taxon diversity in the Genus Holopedium (Crustacea: Cladocera) from the lakes of eastern North America. Can. J. Fish. aquat. Sci. 54: 1928–1936.

    Google Scholar 

  • Hudson, P. L., J. W. Reid, L. T. Lesko & J. H. Selgeby, 1998. Cyclopoid and harpacticoid copepods of the Laurentian Great Lakes. Ohio Biological Survey Bulletin NS 12 (2) – 1998. Columbus, OH.

  • Hutchinson, G. E., 1967. A Treatise on Limnology: vol. II. Introduction to Lake Biology and the Limnoplankton. John Wiley & Sons, Inc., New York: 1115 pp.

    Google Scholar 

  • Jenkins, D. G. & A. L. Buikema Jr., 1998. Do similar communities develop in similar sites? A test with zooplankton structure and function. Ecol. Monogr. 68(3): 421–443.

    Google Scholar 

  • Juday, C., 1915. Limnological studies on some lakes in Central America. Trans. Wisconsin Acad. Sci. Arts Lett. 18: 214–250.

    Google Scholar 

  • Klink, A., 1982. Description of Mochlonyx triangularis new species and a key to the larvae, pupae and imagines of the palearctic species of Mochlonyx (Diptera: Chaoboridae). Entomologische Berichten (Amsterdam) 42: 150–155.

    Google Scholar 

  • Ko¡rinek, V., 1981. Diaphanosoma birgei n.sp. (Crustacea, Cladocera). A new species from America and its widely distributed subspecies Diaphanosoma birgei ssp. lacustris n.ssp. Can. J. Zool. 59: 1115–1121.

    Google Scholar 

  • Kratz, T. A., K. E. Webster, C. J. Bowser, J. J. Magnuson & B. J. Benson, 1997. The influence of landscape position on lakes in northern Wisconsin. Freshwat. Biol. 37(1): 209–217.

    Google Scholar 

  • Lampert, W. & U. Sommer, 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, NY.

    Google Scholar 

  • MacArthur, R. H. & E. O. Wilson, 1967. The Theory of Island Biogeography. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Marsh, C. D., 1893. On the Cyclopoidae and Calanidae of central Wisconsin. Trans. Wisconsin Acad. Sci. Arts Lett. 9: 189–224, pl. 3–6.

    Google Scholar 

  • Negrea, S., 1983. Fauna Republicii Socialiste România. Crustacea vol. IV (12). Cladocera. Editura Academiei Republicii Socialiste România. Bucuresti.

    Google Scholar 

  • Omernik, J. M. & A. L. Gallant, 1988. Ecoregions of the Upper Midwest states. USEPA, EPA/600/3-88/037, Corvallis, OR: 56 pp.

    Google Scholar 

  • Omernik, J. M., D. P. Larsen, C. M. Rohm & S. E. Clark, 1988. Summer total phosphorus in lakes: a map of Minnesota, Wisconsin and Michigan, U.S.A. Envir. Manage. 12: 815–825.

    Google Scholar 

  • Pennak, R.W., 1989. Freshwater Invertebrates – United States. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Rivier, I. K., 1998. The predatory cladocera (Onychopoda: Podonidae, Polyphemidae, Cercopagidae) and Leptodorida of the world. Vol. 13 of H. J. F. Dumont (ed.) Guides to the identification of the macroinvertebrates of the Continental waters of the world. Backhuys Publishers, Leiden.

    Google Scholar 

  • Semeniuk, C. A. & V. Semeniuk, 1995. A geomorphic approach to global classification for inland wetlands. Vegetatio 118: 103–124.

    Google Scholar 

  • Silva-Briano, M., 1998. A revision of the macrothricid-like anomopods. Ph.D. thesis. University of Ghent, Belgium, Laboratorium voor Ecologie der Dieren.

    Google Scholar 

  • Smirnov, N. N., 1971. Chydoridae Fauny Mira. Fauna SSSR, Nov. Ser. No. 101. Rakoobraznyye, T. 1, vyp. 2. In English from Israel Program for Scientific Translations, Jerusalem 1974: 531 pp.

  • Smirnov, N. N., 1992. The Macrothricidae of the World. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing. Amsterdam, The Netherlands.

    Google Scholar 

  • Smirnov, N. N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. SPB Academic Publishing, Amsterdam, The Netherlands.

    Google Scholar 

  • Sokal, R. R. & N. L. Oden, 1978. Spatial autocorrelation in biology. 1. Methodology. 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. linn. Soc. 10: 199–228.

    Google Scholar 

  • Stemberger, R. S., 1995. Pleistocene refuge areas and postglacial dispersal of copepods of the northeastern United States. Can. J. Fish. aquat. Sci. 52(1): 2197–2210.

    Google Scholar 

  • Tessier, A. J. & R. J. Horwitz, 1990. Influence of water chemistry on size structure of zooplankton assemblages. Can. J. Fish. aquat. Sci. 47: 1937–1943.

    Google Scholar 

  • Wilson, M. S. & H. C. Yeatman, 1959. Free-Living Copepoda. In Edmondson, W. T. (ed.), Fresh-Water Biology. John Wiley & Sons, Inc., New York: 735–794.

    Google Scholar 

  • Wisconsin Department of Natural Resources, 1993. Wetland functional values. Wisc. Dep.Nat. Resources. PUBL-WZ-026: 4 pp.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley I. Dodson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schell, J.M., Santos-Flores, C.J., Allen, P.E. et al. Physical-chemical influences on vernal zooplankton community structure in small lakes and wetlands of Wisconsin, U.S.A.. Hydrobiologia 445, 37–50 (2001). https://doi.org/10.1023/A:1017574316867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017574316867

Navigation