Skip to main content
Log in

Effect of Vacancies on the Electronic Structure and Bonding of Zirconium Nitride

  • Published:
Inorganic Materials Aims and scope

Abstract

The electronic structure and bonding configuration of cubic (B1 type) Zr- and N-deficient zirconium nitride phases were investigated using self-consistent linearized muffin-tin-orbital calculations in the atomic-sphere approximation for a supercell containing eight atoms. Interatomic interactions were analyzed in terms of the crystalline orbital overlap population calculated by the semiempirical tight-binding method. The results are compared with earlier calculations and available experimental data on the electronic structure of nonstoichiometric ZrN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Goldschmidt, H.J., Interstitial Alloys, London: Butterworths, 1967, vol. 1.

    Google Scholar 

  2. Toth, L.E., Transition Metal Carbides and Nitrides, New York: Academic, 1971.

    Google Scholar 

  3. Shveikin, G.P., Alyamovskii, S.I., Zainulin, Yu.G., et al., Soedineniya peremennogo sostava i ikh tverdye rastvory (Compounds of Variable Composition and Their Solid Solutions), Sverdlovsk: Ural. Nauchnyi Tsentr Akad. Nauk SSSR, 1984.

    Google Scholar 

  4. Gusev, A.I., Fizicheskaya khimiya nestekhiometricheskikh tugoplavkikh soedinenii (Physical Chemistry of Nonstoichiometric Refractory Compounds), Moscow: Nauka, 1991.

    Google Scholar 

  5. Rempel', A.A., Effekty uporyadocheniya v nestekhiometricheskikh soedineniyakh vnedreniya (Ordering Effects in Nonstoichiometric Interstitial Compounds), Yekaterinburg: Nauka, 1992.

    Google Scholar 

  6. Ivanovskii, A.L., Gubanov, V.A., Kurmaev, E.Z., and Shveikin, G.P., Electronic Structure and Chemical Bonding of Nonstoichiometric Refractory Group IV and V Transition-Metal Compounds, Usp. Khim., 1983, vol. 52, no. 3, pp. 705–732.

    Google Scholar 

  7. Marksteiner, P., Weinberger, P., Neckel, A., et al., Electronic Structure of Substoichiometric Carbides and Nitrides of Titanium and Vanadium, Phys. Rev. B: Condens. Matter, 1986, vol. 33, no. 2, pp. 812–820.

    Google Scholar 

  8. Ivanovskii, A.L., Anisimov, V.I., Novikov, D.L., et al., The Influence of Structural Defects on the Electronic Properties of Interstitial Alloys: I. Lattice Vacancies, J. Phys. Chem. Solids, 1989, vol. 49, no. 5, pp. 465–477.

    Google Scholar 

  9. Novikov, D.L., Ivanovskii, A.L., and Gubanov, V.A., The Influence of Carbon Vacancies on the Electronic Structure of Niobium Carbides, Phys. Status Solidi B, 1987, vol. 139, no. 3, pp. 257–265.

    Google Scholar 

  10. Ivanovskii, A.L., Anisimov, V.I., and Gubanov, V.A., Effects of Metal and Metalloid Vacancies on the Electronic Structure of Cubic (CaF2 and NaCl Types) Transition-Metal Phases, Metallofizika (Kiev), 1988, vol. 10, no. 2, pp. 47–54.

    Google Scholar 

  11. Ivanovskii, A.L., Zhukov, V.P., and Gubanov, V.A., Elektronnoe stroenie tugoplavkikh karbidov i nitridov perekhodnykh metallov (Electronic Structure of Refractory Transition-Metal Carbides and Nitrides), Moscow: Nauka, 1990.

    Google Scholar 

  12. Gubanov, V.A., Zhukov, V.P., and Ivanovskii, A.L., New Achievements in Theoretical Calculations of Electronic Structure and Properties of Transition Metal Compounds, Rev. Solid State Sci., 1991, vol. 5, no. 2/3, pp. 315–323.

    Google Scholar 

  13. Ivanovskii, A.L., Ternary Carbides and Nitrides of Transition Metals and Group IIIA and IVA Elements: Electronic Structure and Chemical Bonding, Usp. Khim., 1995, vol. 66, no. 6, pp. 499–518.

    Google Scholar 

  14. Ivanovskii, A.L. and Medvedeva, N.I., Electronic Structure of Metastable Cubic Ti-Al-Si-C-N-O Solid Solutions, Zh. Neorg. Khim., 1997, vol. 42, no. 5, pp. 789-799.

    Google Scholar 

  15. Schwarz, K., Williams, A., Cuomo, J., and Harper, J., Zirconium Nitride-A New Material for Josephson Junctions, Phys. Rev. B: Condens. Matter, 1985, vol. 32, no. 12, pp. 8312–8318.

    Google Scholar 

  16. Shalaeva, E.V., Borisov, S.V., and Makhnev, A.A., Structure and Optical Properties of Superstoichiometric Cubic Solution δ-NbN1, 2(C,O), Khimiya tverdogo tela: Struktura, svoistva i primenenie novykh neorganicheskikh materialov (Solid-State Chemistry: Structure, Properties, and Applications of New Inorganic Materials), Shveikin, G.P. and Ivanovskii, A.L., Eds., Yekaterinburg: Inst. Khimii Tverdogo Tela Ural. Otd. Ross. Akad. Nauk, 1998, pp. 56–65.

    Google Scholar 

  17. Marksteiner, P., Weinberger, P., Neckel, A., et al., On the Electronic Structure of Zirconium Nitride: The Influence of Metal Vacancies, J. Phys. F: Metal Phys., 1986, vol. 16, no. 9, pp. 1495–1500.

    Google Scholar 

  18. Ivashchenko, V.I., Trofimova, E.P., Lisenko, A.A., and Zhurakovskii, E.A., Electronic Structure of Zirconium Nitrides Containing Zirconium and Nitrogen Vacancies, Metallofizika (Kiev), 1990, vol. 11, no. 1, pp. 14–21.

    Google Scholar 

  19. Prieto, P., Galan, L., and Sanz, J.M., Electronic Structure of Insulating Zirconium Nitride, Phys. Rev. B: Condens. Matter, 1993, vol. 47, no. 3, pp. 1613–1615.

    Google Scholar 

  20. Prieto, P., Fernandez, A., Soriano, L., et al., Electronic Structure of Insulating Zr3N4 Studied by Resonant Photoemission, Phys. Rev. B: Condens. Matter, 1995, vol. 51, no. 24, pp. 17984–17987.

    Google Scholar 

  21. Prieto, P., Yubero, F., Elizalde, E., and Sanz, J.M., Dielectric Properties of Zr, ZrN, Zr3N4, and ZrO2 Determined by Quantitative Analysis of Energy Loss Spectra, J. Vac. Sci. Technol., A, 1996, vol. 14, no. 6, pp. 3181-31188.

    Google Scholar 

  22. Lerch, M., Fuglein, E., and Wrba, J., Synthesis, Crystal Structure, and High Temperature Behavior of Zr3N4, Z. Anorg. Allg. Chem., 1996, vol. 622, no. 2, pp. 367–372.

    Google Scholar 

  23. Skriver, H., The LMTO Method, Berlin: Springer, 1984.

    Google Scholar 

  24. Hoffmann, R., Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, New York: VCH, 1985, pp. 26–32.

    Google Scholar 

  25. Rempel', A.A., Ordering of Atoms and Vacancies in Nonstoichiometric Carbides, Usp. Fiz. Nauk, 1996, vol. 166, no. 1, pp. 33–62.

    Google Scholar 

  26. Gusev, A.A., Order-Disorder Transitions and Phase Equilibria in Highly Nonstoichiometric Carbides, Usp. Fiz. Nauk, 2000, vol. 170, no. 1, pp. 3–40.

    Google Scholar 

  27. Marksteiner, P., Weinberger, P., Neckel, A., et al., Electronic Structure of Substoichiometric Carbides and Nitrides of Zirconium and Niobium, Phys. Rev. B: Condens. Matter, 1986, vol. 33, no. 10, pp. 6709–6717.

    Google Scholar 

  28. Ivanovskii, A.L. and Elfimov, I.S., Effect of Carbon Vacancies on the Electronic Structure of VzTiyCx Carbides: Ab initio LMTO Calculations, Fiz. Tverd. Tela (S.-Peterburg), 1996, vol. 38, no. 12, pp. 3608–3613.

    Google Scholar 

  29. Ivanovskii, A.L., Kontsevoi, O.Yu., Bamburov, V.G., and Shveikin, G.P., Synthesis and Electronic Structure of Cubic Solid Solutions in the Systems Sc2CO-ZrN and Sc2CO-HfN, Dokl. Akad. Nauk, 1998, vol. 363, no. 1, pp. 68–70.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanovskii, A.L., Medvedeva, N.I. & Okatov, S.V. Effect of Vacancies on the Electronic Structure and Bonding of Zirconium Nitride. Inorganic Materials 37, 459–465 (2001). https://doi.org/10.1023/A:1017568515295

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017568515295

Keywords

Navigation