Skip to main content
Log in

A Light-Fronts Approach to a Two-Center Time-Dependent Dirac Equation

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The two center time dependent Dirac equation, for an electron in the external field of two colliding ultrarelativistic heavy ions is considered. In the ultrarelativistic limit, the ions are practically moving at the speed of light and the electromagnetic fields of the ions are confined to the light fronts by the extreme Lorentz contraction and by the choice of gauge, designed to remove the long-range Coulomb effects. An exact solution to the ultrarelativistic limit of the two-center Dirac equation is found by using light-front variables and a light-fronts representation. Previously unexplained experimental results obtained at CERN's SPS are explained in this way and predictions are made as to where one should look, in momentum space, and in space-time, if one wants to study and observe non-perturbative electromagnetic pair-production effects in extremely relativistic heavy-ion collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. B. Segev and J. C. Wells, Phys. Rev. A 57, 1849 (1998).

    Google Scholar 

  2. J. C. Wells, B. Segev, and J. Eichler, Phys. Rev. A 57, 1849 (1999).

    Google Scholar 

  3. B. Segev and J. C. Wells, Phys. Rev. C 59, 2753 (1999).

    Google Scholar 

  4. A. J. Baltz and L. McLerran, Phys. Rev. C 58, 1679 (1998).

    Google Scholar 

  5. U. Eichmann, J. Reinhardt, S. Schramm, and W. Greiner, Phys. Rev. A 59, 1223 (1999).

    Google Scholar 

  6. W. Greiner, B. Müller, and J. Rafelski, Quantum Electrodynamics of Strong Fields (Springer, New York, 1985).

    Google Scholar 

  7. C. A. Bertulani and G. Baur, Phys. Reps. 163, 299 (1988).

    Google Scholar 

  8. J. Eichler and W. E. Meyerhof, Relativistic Atomic Collisions (Academic, San Diego, 1995).

    Google Scholar 

  9. Jö rg Eichler, Phys. Rep. 193, 165 (1990).

    Google Scholar 

  10. R. Jackiw, D. Kabat, and M. Ortiz, Phys. Lett. B 277, 148 (1992).

    Google Scholar 

  11. A. J. Baltz, Phys. Rev. Lett. 78, 1231 (1997).

    Google Scholar 

  12. J. D. Bjorken, J. B. Kogut, and E. Soper, Phys. Rev. D 3, 1382 (1971).

    Google Scholar 

  13. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge University Press, London, 1962).

    Google Scholar 

  14. R. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).

    Google Scholar 

  15. C. R. Vane, S. Datz, P. F. Dittner, H. F. Krause, C. Bottcher, M. Strayer, R. Schuch, H. Gao, and R. Hutton, Phys. Rev. Lett. 69, 1911 (1992).

    Google Scholar 

  16. C. R. Vane, S. Datz, P. F. Dittner, H. F. Krause, R. Schuch, H. Gao, and R. Hutton, Phys. Rev. A 50, 2313 (1994).

    Google Scholar 

  17. C. R. Vane, S. Datz, E. F. Deveney, P. F. Dittner, H. F. Krause, R. Schuch, H. Gao, and R. Hutton, Phys. Rev. A 56, 3682 (1997).

    Google Scholar 

  18. C. Bottcher and M. R. Strayer, Phys. Rev. D 39, 1330 (1989).

    Google Scholar 

  19. M. C. Güclü, Phys. Rev. C 61, 054903 (2000).

    Google Scholar 

  20. D. Y. Ivanov, A. Schiller, and V. G. Serbo, Phys. Lett. B 454, 155 (1999).

    Google Scholar 

  21. V. G. Serbo, Nucl. Phys. B 82, 414 (2000).

    Google Scholar 

  22. B. Segev and J. C. Wells, private communication with V. G. Serbo.

  23. R. N. Lee and A. I. Milstein, Phys. Rev. A 61, 062103 (2000).

    Google Scholar 

  24. U. Eichmann, J. Reinhardt, and W. Greiner, Phys. Rev. A 61, 062710 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segev, B., Wells, J.C. A Light-Fronts Approach to a Two-Center Time-Dependent Dirac Equation. Foundations of Physics 31, 993–1015 (2001). https://doi.org/10.1023/A:1017568103155

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017568103155

Keywords

Navigation