Skip to main content
Log in

Fatigue properties of jointed wood composites Part I Statistical analysis, fatigue master curves and constant life diagrams

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The primary aim of this work was to assess the fatigue performance of scarf-jointed laminated wood composites used to manufacture wind turbine blades and establish simple fatigue design procedures. Laminates made from poplar (Populus canadensis/serotina), Khaya (Khaya ivorensis) and beech (Fagus sylvatica), incorporating typical scarf joints, were assessed under reversed loading (R =−1). Scarf joints were found to be great equalizers of fatigue performance for wood species with different static strengths. Poplar was investigated at several other R ratios (+3, −3, −0.84 and 0.33). The application of 95% survival probability limits derived from pooled data increases the statistical reliability of σ–N curves and gives an improved estimate of a material's minimum performance. The σ–N curves derived for all three wood species at R =−1 were normalized with respect to ultimate compressive strength values and found to be practically coincidental. This allowed the derivation of a master curve for a generic scarf-jointed wood laminate under reversed load conditions. This relationship was verified using data from the literature and found to be a good predictor of fatigue performance. The construction of simple triangulated constant life diagrams based on static tensile and compressive tests and fatigue testing at R =−1 brings about a rapid assessment of the overall fatigue performance of any wood composite. These can then be used in the fatigue design or life prediction of wood composites under cyclic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. P. ANSELL, M. HANCOCK and P. W. BONFIELD in “Proceedings of the International Timber Engineering Conference, edited by J. Marcroft Vol. 4 (TRADA, Buckingham, 1991) pp. 194-202.

    Google Scholar 

  2. M. HANCOCK, Wind Energy Group, Report for DTI no. WEG/R038/6201, March 1994.

  3. J. M. DINWOODIE, “Timber -- Its Nature and Behaviour” (Van Nostrand Reinhold, London, 1981).

    Google Scholar 

  4. H. E. DESCH, “Timber -- Its Structure, Properties and Utilisation”, 6th Edn (Macmillan, London, 1981).

    Google Scholar 

  5. J. BODIG and B. A. JAYNE, “Mechanics of Wood and Wood Composites” (Van Nostrand Reinhold, New York, 1982).

    Google Scholar 

  6. W. C. LEWIS, in “Proceedings of ASTM 46” (American Society for Testing and Materials, Philadelphia, 1946) pp. 814-835.

    Google Scholar 

  7. G.H. KYANKA, Int. J. Frac. 16 (1980) 609.

    Google Scholar 

  8. K. T. TSAI and M. P. ANSELL, J. Mater. Sci. 25 (1990) 865.

    Google Scholar 

  9. P. W. BONFIELD and M. P. ANSELL, ibid. 26 (1991) 4765.

    Google Scholar 

  10. K. T. TSAI and M. P. ANSELL, in “Proceedings of the 6th BWEA Wind Energy Conference -- Wind Energy Conversion-1984”, edited by P. Musgrove (Cambridge University Press, Cambridge, 1984) pp. 239-255.

    Google Scholar 

  11. K. T. TSAI and M. P. ANSELL, in “Proceedings of the 7th BWEA Wind Energy Conference -- Wind Energy Conversion-1985”, edited by A. Garrad (Mechanical Engineering Publications, London, 1985) pp. 285-292.

    Google Scholar 

  12. K. T. TSAI, PhD thesis, University of Bath (1987).

  13. W. J. KOMMERS, US Forest Products Research Laboratory, Report no. 1327 (U.S. Department of Agriculture, Madison, Wisconsin, 1943).

  14. A. G. H. DIETZ and H. GRINSFELDER, Trans ASME (1943) pp. 187-191.

  15. G. JENKINS, Bristol Aircraft Ltd, Structures and Materials Laboratory Report No. 171-76B-3040 (1962).

  16. N. IMAYAMA and T. MATSUMOTO, J. Jpn Wood Res. Soc. 16 (1970) 319.

    Google Scholar 

  17. Y. IBUKI, H. SASAKI, M. KAWAMOTO and T. MAKU, J. Jpn Soc. Test. Mater. 11(101) (1962) 103.

    Google Scholar 

  18. F. B. FULLER and T. T. OBERG, J. Aeronaut. Sci. March (1943) 81.

  19. T. MAKU and H. SASAKI, Mokuzai Kenkyu 31 (1963) 23.

    Google Scholar 

  20. R. STERR, Holz. als Roh Werkstoff 21(2) (1963) 47 (Trans. no. 171. Canada Department of Forest Products Research Branch).

    Google Scholar 

  21. M. OTA and Y. TSUBOTA, J. Jpn Wood Res. Soc. 12 (1966) 26.

    Google Scholar 

  22. W. C. LEWIS, Proc. US Forest Prod. Res. Soc. 5 (1951) 221.

    Google Scholar 

  23. A. C. SEKHAR, N. K. SUKLA and V. K. GUPTA, J. Nat. Bldg. Org. 8(4) (1963) 36.

    Google Scholar 

  24. P. E. JOHNSON, “Design of test specimens and procedures for generating material properties of Douglas Fir/Epoxy laminated wood composite material” Final Report NASA-CR-174910; DOE/NASA-0286-1; UDR-TR85-45 DEN3-286; DE-AI01-79ET-20320 850700, March 1982-March 1985 (1985).

  25. W. C. LEWIS, US Forest Products Laboratory Report no. 2236 (U.S. Department of Agriculture, Madison, Wisconsin, 1962).

  26. P. W. BONFIELD and M. P. ANSELL, in “Proceedings of the 10th BWEA Wind Energy Conference -- Wind Energy Conversion-1988”, edited by D.J. Milborrow (Mechanical Engineering Publications, London, 1988) pp. 377-383.

    Google Scholar 

  27. Idem., in “Proceedings of the European Wind Energy Conference -- EWEC'89” (Peter Peregrinus, Amsterdam, 1989) pp. 406-410.

    Google Scholar 

  28. Idem., in “Proceedings of the 13th BWEA Wind Energy Conference -- Wind Energy Conversion-1991”, edited by A. Garrad, D. Quarton, V. Fenton (Mechanical Engineering Publications, London, 1991) p. 311-316.

    Google Scholar 

  29. P. W. BONFIELD, I. P. BOND, C. L. HACKER and M. P. ANSELL, in “Proceedings of the 14th BWEA Wind Energy Conference -- Wind Energy Conversion-1992”, edited by B. Clayton (Mechanical Engineering Publications, London, 1992) p. 243-250.

    Google Scholar 

  30. M. A. MINER, Trans. ASME 67 (1945) A159.

    Google Scholar 

  31. W. BOHANNAN and K. KANVIK, US Forest Products Research Laboratory Research Paper FPL114 (U.S. Department of Agriculture, Madison, Wisconsin, 1969).

    Google Scholar 

  32. P. W. BONFIELD, PhD thesis, University of Bath (1991).

  33. ASTM E206 (1972) “Fatigue testing and the statistical analysis of fatigue data”, (American Society for Testing and Materials, Philadelphia, PA, 1972).

    Google Scholar 

  34. M. G. NATRELLA, “Experimental Statistics. Handbook 91”, US Department of Commerce. (National Bureau of Standards, US Government Printing Office, Washington, DC, 1963).

    Google Scholar 

  35. P. T. CURTIS, J. Strain Anal. 24(4) (1989) 235.

    Google Scholar 

  36. M. P. ANSELL, I. P. BOND and P. W. BONFIELD, in “Proceedings of the 9th International Conference on Composite Materials”, Vol. V (Edited by A. Miravete, Woodhead Publishing, University of Zaragoza, 1993) pp. 692-99.

  37. M. POPPEN and P. W. BACH, “Fatigue testing using the Wisper sequence”, ECN Report, ECN-RX-91-077 (The Netherlands Energy Research Foundation, Petten, Holland, 1991).

    Google Scholar 

  38. P. C. CHOU and R. CROMAN, J. Compos. Mater. 12 (1978) 177.

    Google Scholar 

  39. P. M. BARNARD, R. J. BUTLER and P. T. CURTIS, Int. J. Fatigue 10(3) (1988) 171.

    Google Scholar 

  40. D. A. SPERA, J. B. ESGAR, M. GOUGEON and M. D. ZUTECK, “Structural properties of laminated Douglas Fir/Epoxy composite material” DOE/NASA 20320-76, NASA Reference Publication 1236, US Department of Commerce, National Technical Information Service, N91-10127 (Washington, D.C. 1991).

  41. M. HANCOCK and M. BOND in “Proceedings of the 17th BWEA Wind Energy Conference -- Wind Energy Conversion-1995”, edited by B. Clayton (Mechanical Engineering Publications, London, 1995) pp. 275-81.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bond, I.P., Ansell, M.P. Fatigue properties of jointed wood composites Part I Statistical analysis, fatigue master curves and constant life diagrams. Journal of Materials Science 33, 2751–2762 (1998). https://doi.org/10.1023/A:1017565215274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017565215274

Keywords

Navigation