Advertisement

Hydrobiologia

, Volume 446, Issue 1, pp 337–353 | Cite as

Biotechnology and aquaculture of rotifers

  • Esther Lubzens
  • Odi Zmora
  • Yoav Barr
Article

Abstract

Biotechnology can be defined as any technology that involves living organisms or their derivatives. In applying this definition to rotifers, we focus on their contribution in culturing of early larval stages of marine fish. After almost four decades of marine fish culture in captivity, the success of this worldwide industry is still quite dependent on mass culture of the species Brachionus plicatilis and B. rotundiformis. In mass culture, the rotifers are continuously driven to reproduce at high rates, in relatively extreme environmental conditions of high population density and high loads of organic matter. Therefore, the success of mass cultures and future improvements in these systems relies on a close interaction between basic and applied studies of rotifers. In the present review, we will attempt to analyze why rotifers are suitable for early life stages of fish and to describe, in general, methodologies that have been devised for reliable supply of rotifers in large quantities. Problems associated with rotifer production, nutritional quality and effect on fish health and nutrition, will be discussed. Research on B. plicatilis and B. rotundiformis has increased enormously during the past three decades and these two species are the best-studied rotifers so far. While much of the research on these species is directed or devoted to the needs of aquaculture industry, they are also used as models for addressing basic biological questions, due to the relative ease of culture and their availability. Studies on feeding, pheromones, speciation in rotifers, the occurrence and putative hormones involved in sexual and asexual reproduction and production of resting eggs, are few examples of such studies. Rotifers will probably maintain their role as food organism for fish larvae, in spite of attempts to replace them with more accessible formulated food. Development of new culture methods that will improve the nutritional quality and production efficiency of rotifers may result in more diversified and flexible tasks for these organisms in aquaculture.

rotifers Brachionus plicatilis Brachionus rotundiformis mass cultures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aoki, S. & A. Hino, 1996. Nitrogen flow in a chemostat culture of the rotifer Brachionus plicatilis. Fish. Sci. 62: 8–14.Google Scholar
  2. Balompapueng, M. D., A. Hagiwara, A. Nishi, K. Imaizumi & K. Hirayama, 1997a. Resting egg formation of the rotifer Brachionus plicatilis using a semi-continuous culture method. Fish. Sci. 63: 236–241.Google Scholar
  3. Balompapueng, M. D., A. Hagiwara, Y. Nozaki & K. Hirayama, 1997b. Preservation of resting eggs of the euryhaline rotifer Brachionus plicatilis O. F. Muller by canning. Hydrobiologia 358: 163–166.Google Scholar
  4. Baragi, V. & R. T. Lowell, 1986. Digestive enzyme activity in striped bass from first feeding through larval development. Trans. am. Fish. Soc. 115: 478–484.Google Scholar
  5. Bessonart, M., M. S. Izquierdo, M. Salhi, C. M. Hernandez-Cruz, M. M. Gonzalez & H. Fernandez-Palacios, 1999. Effect of dietary arachidonic acid levels on growth and survival of gilthead seabream (Sparus aurata L. ) larvae. Aquaculture 179: 265–275.Google Scholar
  6. Blanch, A. R., M. Simo, J. T. Jofre & G. Minkoff, 1991. Bacteria associated with hatchery cultivated turbot: are they implicated in rearing success? In Lavens P, P. Sorgeloos, E. Jaspers & F. Ollevier (eds), Larvi’ 91 - Fish and Crustacean Larviculture Symposium, Eur. Aquacult. Soc. Spec. Publ. 15, Gent (Belgium): 392–394.Google Scholar
  7. Blaxter, J. H. S., 1974. The Early life History of Fish. Springer-Verlag Berlin Heidleberg New York: 765pp.Google Scholar
  8. Boehm, E. W., O. Gibson & E. Lubzens, 2000. Caharacterization of sattelite DNA sequences from commercially important marine rotifers Brachionus plicatilis and Brachionus rotundiformis. Mar. Biotechnol. 2: 38–48.Google Scholar
  9. Bower, C. E. & J. P. Bidwell, 1978. Ionization of ammonia in seawater: effect of temperature, pH and salinity. J. Fish. Res. B. Can. 35: 1012–1016.Google Scholar
  10. Cahu, C. L. & J. L. Zambonino Infante, 1994. Early weaning of sea bass (Dicentrarchus labrax) larvae with a compound diet: effect on digestive enzymes. Comp. Biochem. Physiol. 109A: 213–222.Google Scholar
  11. Cochrane, B. J., R. B. Irby & T. W. Snell, 1991. Effects of copper and tributylin on stress protein abundance in the rotifer Brachionus plicatilis. Comp. Biochem. Physiol. 98C: 383–390.Google Scholar
  12. Colorni, A., O. Zmora & E. S. Kutin, 1991. Systematic infection in the rotifer Brachionus plicatilis by an invasive yeast. Bull. Eur. Ass. Fish Path. 11: 116–117.Google Scholar
  13. Comps, M. & B. Menu, 1997. Infectious diseases affecting mass production of the marine rotifer Brachionus plicatilis. Hydrobiologia 358: 179–183.Google Scholar
  14. Comps, M., B. Menu & V. Moreau, 1993. Massive infections with fungus of the rotifer Brachionus plicatilis. Bull. eur. Ass. Fish Pathol. 13: 28–29.Google Scholar
  15. Comps, M., J. Mari, F. Poisson & J. R. Bonami, 1991a. Biophysical and biochemical properties of an unusual birnavirus pathogenic for rotifers. J. Gen. Virol. 72: 1229–1236.Google Scholar
  16. Comps, M., B. Menu, G. Breuil & J. R. Bonami, 1991b. Viral infection associated with rotifer mortalities in mass culture. Aquaculture 93: 1–7.Google Scholar
  17. Dabrowski, K., 1979. The role of proteolytic enzymes in fish digestion. In Styczynska-Jurewicz, E., T. Backiel, E. Jaspers & J. Persoone (eds), Cultivation of Fish Fry and its Live Food. Eur. Maricult. Soc., Spec. Publ. 4, Bredene (Belgium): 107–126.Google Scholar
  18. Dabrowski, K., 1984. The feeding of fish larvae: present 'state of the art’ and perspectives. Reprod. Nutr. Develop. 24: 807–833.Google Scholar
  19. Dabrowski, K. & J. H. Blom, 1994. Ascorbic acid deposition in rainbow trout (Oncorhynchus mykiss) eggs and survival of embryos. Comp. Biochem. Physiol. 108A: 129–135.Google Scholar
  20. Dabrowski, K. & A. Ciereszko, 1993. Influence of fish size, origin, and stress on ascorbate concentration in vital tissues of hatchery rainbow trout. Prog. Fish Cult. 55: 109–135.Google Scholar
  21. Diaz, M., F. J. Moyano, F. L. Garcia-Carreno, F. J. Alarcon & M. C. Sarasquete, 1997. Substrate-SDS-PAGE determination of protease activity through larval development in sea bream. Aquaculture Int. 5: 461–471.Google Scholar
  22. Estevez, A., L. A. McEvoy, J. G. Bell & J. R. Sargent, 1999. Growth, survival, lipid composition and pigmentation of turbot (Scophthalmus maximus) larvae fed live-prey enriched in Arachidonic and Eicosapentaenoic acids. Aquaculture 180: 321–343.Google Scholar
  23. F.A.O., 1998. The state of world fisheries and aquaculture. Food and Agricultural Organization of the United Nations, Rome: www. FAO.org.Google Scholar
  24. Federation of European Aquaculture Producers, 2000. Mediterranean marine species juveniles: www. feap.org.Google Scholar
  25. Fernandez-Reiriz, U. Labarta & M. J. Ferreiro, 1993. Effects of commercial enrichment diets on the nutritional value of the rotifer (Brachionus plicatilis). Aquaculture 112: 195–206.Google Scholar
  26. Fjelheim, A. J., P. Markidis, J. Skjermo & O. Vadstein, 1999. Rotifers (Brachionus plicatilis) as vector for probiotic to turbot larvae (Scophthalmus maximus). In Towards predictable quality, Aquaculture Europe, EAS Special publication No. 27: 60–61.Google Scholar
  27. Frolov, A. V. & S. L. Pankov, 1992. The effect of starvation on the biochemical composition of the rotifer Brachionus plicatilis. J. mar. biol. Ass. U. K. 72: 343–356.Google Scholar
  28. Frolov, A. V., S. L. Pankov, K. N. Geradz, S. A. Pankova & L. V. Spektrova, 1991. Influence of the biochemical composition of food on the biochemical composition of the rotifer Brachionus plicatilis. Aquaculture 97: 181–202.Google Scholar
  29. Fu, Y., K. Hirayama & Y. Natsukari, 1990. Strains of the rotifer Brachionus plicatilis having particular patterns of isozymes. In Hirano R. & I. Hanyu (eds), The Second Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines: 37–40.Google Scholar
  30. Fu, Y., K. Hirayama & Y. Natsukari, 1991a. Morphological differences between the two types of the rotifer Brachionus plicatilis O. F. Muller. J. exp. mar. Biol. Ecol. 151: 29–41.Google Scholar
  31. Fu, Y., K. Hirayama & Y. Natsukari, 1991b. Genetic divergence between S and L type stains of the rotifer Brachionus plicatilis O. F. Muller. J. exp. mar. Biol. Ecol. 151: 43–56.Google Scholar
  32. Fu, Y., A. Hada, T. Yamashita, Y. Yoshida & A. Hino, 1997. Development of a continuous culture system for stable mass production of the marine rotifer Brachionus. Hydrobiologia 358: 145–151.Google Scholar
  33. Fujita, S., 1979. Culture of red sea bream Pagrus major, and its food. In Styczynska-Jurewicz, E., T. Backiel, E. Jaspers & J. Persoone (eds), Cultivation of Fish Fry and its Live Food. Eur. Maricult. Soc., Spec. Publ. 4, Bredene (Belgium): 183–197.Google Scholar
  34. Fukusho, K., 1989a. Biology and mass production of the rotifer Brachionus plicatilis (1). Int. J. Aquacult. Fish. Technol. 1: 232–240.Google Scholar
  35. Fukusho, K., 1989b. Biology and mass production of the rotifer Brachionus plicatilis (2). Int. J. Aquacult. Fish. Technol. 1: 292–299.Google Scholar
  36. Fulks, F. & K. L. Main, 1991. Rotifer and microalgae culture systems. Rotifer and Microalgae Culture Systems, Proc. U.S.- Asia Workshop. The Oceanic Insitute, Honolulu, HI: 364 pp.Google Scholar
  37. Furukawa, I. & K. Hidaka, 1973. Technical problems encountered in mass culture of rotifer using marine yeast as food organisms. Bull. Plank. Soc. Jpn. 20: 61–71.Google Scholar
  38. Gallardo, W. G., A. Hagiwara, Y. Tomita & T. W. Snell, 1999. Effect of growth hormone and ã-aminobutyric acid on Brachionus plicatilis (Rotifera) reproduction at low food or high ammonia levels. J. exp. mar. Biol. Ecol. 240: 179–191.Google Scholar
  39. Gallardo, W. G., A. Hagiwara, Y. Tomita, K. Soyano & T. W. Snell, 1997. Effect of some vertebrate and invertebrate hormones on the population growth, mictic female production and body size of the marine rotifer Brachionus plicatilis Muller. Hydrobiologia 358: 113–120.Google Scholar
  40. Gatesoupe, F. J., 1990. The continuous feeding of turbot larvae, Scophthalmus maximus, and the control of the bacterial environment of rotifers. Aquaculture, 89: 139–148.Google Scholar
  41. Gatesoupe, F. J., 1991. The effect of three strains of lactic bacteria on the production rate of rotifers, Brachionus plicatilis, and their dietary value for larval turbot, Scophthalmus maximus. Aquaculture 96: 335–342.Google Scholar
  42. Gatesoupe, F. J., 1993. Bacillus sp. spores as food additive for the rotifer Brachionus plicatilis: improvement of their bacterial environment and their dietary value for larval turbot Scophthalmus maximus L. In Kaushik, S. J., P. Luquet (eds), Fish Nutrition in Practice. Institut National de la Recherche Agronomique, Paris, France, Les Colloques, Vol. 61: 561–568.Google Scholar
  43. Gatesoupe, F. J., 1999. The use of probiotics in aquaculture. Aquaculture 180: 147–165.Google Scholar
  44. Gomez, A., C. Clabby & G. R. Carvalho, 1998. Isolation and characterization of microsatellite loci in a cyclically parthenogenetic rotifer, Brachionus plicatilis. Mol. Ecol. 7: 1613–1621.Google Scholar
  45. Gomez, A. & G. R. Carvalho, 2000. Sex, parthogenesis and genetic structure of rotifers: microsatellite analysis of contemporary and resting egg bank populations. Mol. Ecol. 9: 203–214.Google Scholar
  46. Govoni, J. J., G. W. Boehlert & Y. Watanabe, 1986. The physiology of digestion in fish larvae. Envir. Bio. Fishes 16: 59–77.Google Scholar
  47. Grisez, L., J. Reyniers, L. Verdonck, J. Swings & F. Ollevier, 1997. Dominant intestinal microflora of sea bream and sea bass larvae, from two hatcheries, during larval development. Aquaculture 155: 387–399.Google Scholar
  48. Hadani, A, S. Beddig & E. Lubzens, 1992. Factors affecting survival of cryopreserved rotifers (Brachionus plicatilis O. F. Müller). In Moav, B., V. Hilge & H. Rosenthal (eds), Progress in Aquaculture Research. Eur. Aquacult. Soc. Spec. Publ. 17, Oostende (Belgium): 253–267.Google Scholar
  49. Hagiwara, A., 1994. Practical use of rotifer cysts. Israel J. Aquaculture-Bamidgeh 46: 13–21.Google Scholar
  50. Hagiwara, A., 1996. Appearance of floating resting eggs in the rotifers Brachionus plicatilis and B. rotundiformis. Bull. Fac. Fish. Nagasaki University 77: 111–115.Google Scholar
  51. Hagiwara, A. & A. Hino, 1989. Effect of incubation and preservation on resting egg hatching and mixis in the derived clones of the rotifer Brachionus plicatilis. Hydrobiologia 186/187: 415–421.Google Scholar
  52. Hagiwara, A. & A. Hino, 1990. Feeding history and hatching of resting eggs in the marine rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 56: 1965–1971.Google Scholar
  53. Hagiwara, A. & K. Hirayama, 1993. Preservation of rotifers and its application in the finfish hatchery. In Lee, C.-S., M. S. Su & I. Liao (eds), Proc. Finfish Hatchery in Asia’ 91. TLM Conference Proceedings, Tungkang Marine Laboratory, Taiwan Fisheries research Institute, Tungkang, Taiwan 3: 61–71.Google Scholar
  54. Hagiwara, A. & C.-S. Lee, 1991. Resting egg formation of the L-and S-type rotifer Brachionus plicatilis under different water temperature. Nippon Suisan Gakkaishi 57: 1645–1650.Google Scholar
  55. Hagiwara, A., A. Hino & R. Hirano, 1985. Combined effects of environmental conditions on the hatching of fertilized eggs of the rotifer Brachionus plicatilis collected from an outdoor pond. Bull. Jap. Soc. Sci. Fich. 51: 755–758.Google Scholar
  56. Hagiwara, A., A. Hino & R. Hirano, 1988a. Effects of temperature and chlorinity on resting egg formation in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi. 54: 569–575.Google Scholar
  57. Hagiwara, A., A. Hino & R. Hirano, 1988b. Comparison of resting egg formation among five Japanese stocks of the rotifer Brachionus plicatilis. Nippo Suisan Gakkaishi 54: 577–580.Google Scholar
  58. Hagiwara, A., N. Yamamiya & A. Belem De Araujo, 1998. Effect of water viscosity on the population growth of the rotifer Brachionus plicatilis Muller. Hydrobiologia 387/388: 489–494.Google Scholar
  59. Hagiwara, A., M. D. Balompapueng, N. Munuswamy & K. Hirayama, 1997. Mass production and preservation of the resting eggs of the euryhaline rotifer Brachionus plicatilis and B. rotundiformis. Aquaculture 155: 223–230.Google Scholar
  60. Hagiwara, A., K. Hamada, S. Hori & K. Hirayama, 1994. Increased sexual reproduction in Brachionus plicatilis with the addition of bacteria and rotifer extracts. J. exp. mar. Biol. Ecol. 181: 1–8.Google Scholar
  61. Hagiwara, A., M.-M. Jung, T. Sato & K. Hirayama, 1995a. Interspecific relations between marine rotifer Brachionus rotundiformis and zooplankton species contaminating in the rotifer mass culture tank. Fish. Sci. 61: 623–627.Google Scholar
  62. Hagiwara, A., C.-S. Lee, G. Miyamoto & H. Hino, 1989 Resting egg formation and hatching of the S-type rotifer Brachionus plicatilis at varying salinities. Mar. Biol. 103: 327–332.Google Scholar
  63. Hagiwara, A., K. Hamada, A. Nishi, K. Imaizumi & K. Hirayama, 1993a. Mass production of rotifer Brachionus plicatilis resting eggs in 50 m3 tanks. Nippon Suisan Gakkaishi 59: 93–98.Google Scholar
  64. Hagiwara, A. K. Hamada, A. Nishi, K. Imaizumi & K. Hirayama, 1993b. Dietary value of neonates from rotifer Brachionus plicatilis resting eggs for red sea bream larvae. Nippon Suisan Gakkaishi 59: 99–104.Google Scholar
  65. Hagiwara A., T. Kotani, T. W. Snell, M. Assava-Aree & K. Hirayama, 1995b. Morphology, reproduction, genetics and mating behavior of small, tropical marine Brachionus strains (Rotifera). J. exp. mar. Biol. Ecol. 194: 25–37.Google Scholar
  66. Hagiwara, A., N. Nishi, F. Kawahara, K. Tominaga & K. Hirayama, 1995c. Resting eggs of the marine rotifer Brachionus plicatilis Muller: development and effect of irradiation on hatching. Hydrobiologia 313/314: 223–229.Google Scholar
  67. Hamada, K., A. Hagiwara & K. Hirayama, 1993. Use of preserved diets for rotifer Brachionus plicatilis resting egg formation. Nippon Suisan Gakkaishi 59: 85–91.Google Scholar
  68. Hansen, B., T. Wernberg-Moller & L. Wittrup, 1997. Particle grazing efficiency and specific growth of the rotifer Brachionus plicatilis (Muller). J. exp. mar. Biol. Ecol. 215: 217–233.Google Scholar
  69. Hino, A. & R. Hirano, 1976. Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus plicatilis-I. General aspects of bisexual reproduction inducing factors. Bull. Jap. Soc. Sci. Fish. 42: 1093–1099.Google Scholar
  70. Hino, A. & R. Hirano, 1977. Ecological studies on the mechanism of bisexual reproduction in the rotifer Brachionus plicatilis-II. Effect of cumulative parthogenetic generation on the frequency of bisexual reproduction. Bull. Jap. Soc. Sci. Fish. 43: 1147–1155.Google Scholar
  71. Hino, A. & R. Hirano, 1984. Relationship between water temperature and bisexual reproduction in the rotifer Bachionus plicatilis. Nippon Suisan Gakkaishi 50: 1481–1485.Google Scholar
  72. Hino, A. & R. Hirano, 1985. Relationship between the temperature given at the time of fertilized egg formation and bisexual reproduction pattern in the deriving strain of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 51: 511–514.Google Scholar
  73. Hino, A. & R. Hirano, 1988. Relationship between water chlorinity and bisexual reproduction rate in the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 54: 1139–1332.Google Scholar
  74. Hino, A., S. Aoki & M. Ushiro, 1997. Nitroggen-flow in the rotifer Brachionus rotundiformis and its significance in mass cultures. Hydrobiologia 358: 77–82.Google Scholar
  75. Hirata, H., 1964. Cultivation of live food organisms at the Yashima Station. Saibai-Gyogyo: 2-4, 4 (in Japanese).Google Scholar
  76. Hirata, H., 1979. Rotifer culture in Japan. In Styczynska-Jurewicz, E., T. Backiel, E. Jaspers & J. Persoone (eds), Cultivation of Fish Fry and its Live Food. Eur. Maricult. Soc., Spec.l Publ. 4, Bredene (Belgium): 361–375.Google Scholar
  77. Hirata, H., 1980. Culture methods of the marine rotifer Brachionus plicatilis. Min. Rev. Data File Res. 1: 27–46.Google Scholar
  78. Hirata, H. & Y. Mori, 1967. Mass culture of the marine rotifer fed baker's yeast. Saibai Gyogyo 5: 36–40.Google Scholar
  79. Hirayama, K., 1987. A consideration why mass culture of the rotifer Brachionus plicatilis with baker's yeast is unstable. Hydrobiologia 147: 269–270.Google Scholar
  80. Hirayama, K., 1990. A physiological approach to problems of mass culture of the rotifer. NOAA Technical report No. NMFS 85. U.S. Dept. Commerce, U.S.A.: 73–79.Google Scholar
  81. Hirayama, K. & H. Funamoto, 1983. Supplementary effect of several nutrients on nutritive deficiency of baker's yeast of population growth of the rotifer Brachionus plicatilis. Bull. Jpn. Soc. Sci. Fish. 49: 505–510.Google Scholar
  82. Hirayama, K. & K. Nakamura, 1976. Fundamental studies on the physiology of rotifers in mass culture-V. Dry Chlorella powder as a food for rotifers. Aquaculture 8: 301–307.Google Scholar
  83. Hirayama K. & I. F. M. Rumengan, 1993. The fecundity patterns of S and L type rotifers of Brachionus plicatilis. Hydrobiologia 255/256: 153–157.Google Scholar
  84. Ito, T., 1960. On the culture of the mixohaline rotifer Brachionus plicatilis O. F.Muller, in sea water. Rep. Fac. Fish. Perfect. Univ. Mie 3: 708–740.Google Scholar
  85. James, C. M., & T. Abu-Rezq, 1989a. Intensive rotifer cultures using chemostats. Hydrobiologia 186/187: 423–430.Google Scholar
  86. James, C. M., & T. Abu-Rezq, 1989b. An intensive chemostats culture system for the production of rotifers for aquaculture. Aquaculture 81: 291–301.Google Scholar
  87. James, C. M., & T. Abu-Rezq, 1990. Efficiency of rotifer chemostats in relation to salinity regimes for producing rotifers for aquaculture. J. Aqua. Trop. 5: 103–116.Google Scholar
  88. James, C. M., P. A. Dias & A. E. Salman, 1987. The use of marine yeast (Candida sp.) and bakers yeast (Saccharomyces cerevisiae) in combination with Chlorella sp. for mass culture of the rotifer Brachionus plicatilis. Hydrobiologia 147: 263–268.Google Scholar
  89. James, C. M., M. Bou-Abbas, A. M. Al-Khars, S. Al-Hinty & A. E. Salman, 1983. Production of the rotifer Brachionus plicatilis for aquaculture in Kuwait. Hydrobiologia 104: 77–84.Google Scholar
  90. Jung, M.-M., A. Hagiwara & K. Hirayama, 1997. Interspecific interactions in the marine rotifer microcosm. 358: 121–126.Google Scholar
  91. Kinne, O., 1977. Cultivation of animals. In Kinne, O., (ed.), Marine Ecology. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Vol. III. Part 2: 968–1004.Google Scholar
  92. Kogane, T., A. Hagiwara & K. Imaizumi, 1997. Temperature conditions enhancing resting egg production of the euryhaline rotifer Brachionus plicatilis O. F. Muller (Kamiura strain). Hydrobiologia 358: 167–171.Google Scholar
  93. Kolkovski, S. & A. Tandler, 1995. Why microdiets are still inadequate as aviable alternative to live zooplankters for developing marine fish larvae. Spec. Publ. Eur. Aquacult. Soc. 24: 265–266.Google Scholar
  94. Kolkovski, S., A. Tandler, G. Wm. Kissil & A. Gertler. 1993. The effect of dietary exogenous enzymes on digestion, assimilation, growth and survival of gilthead seabream (Sparus aurata, Sparidae, Linnaeus) larvae. Fish Physiol. Biochem. 12: 203–209.Google Scholar
  95. Korstad, J., Y. Olsen & O. Vadstein, 1989a. Life history characteristics of Brachionus plicatilis (Rotifera) fed different algae. Hydrobiologia 186/187: 43–50.Google Scholar
  96. Korstad, J., Y. Olsen & O. Vadstein, 1989b. Feeding kinetics of Brachionus plicatilis fed Isochrysis galbana. Hydrobiologia 186/187: 51–57.Google Scholar
  97. Korstad, J., A. Neyt, T. Danielsen, I. Overrein & Y. Olsen, 1995. Use of swimming speed and egg ratio as predictors of the status of rotifer cultures in aquaculture. Hydrobiologia 313/314: 395–398.Google Scholar
  98. Lauf, M. & R. Hofer, 1984. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture 37: 335–346.Google Scholar
  99. Lie, O., H. Haaland, G.-I. Hemre, A. Maage, E. Lied, G. Rosenlund, K. Sandnes & Y. Olsen, 1997. Nutritional composition of rotifers following a change in diet from yeast emulsified oil to microalgae. Aquaculture Int. 5: 427–438.Google Scholar
  100. Lubzens, E., 1987. Raising rotifers for use in aquaculture. Hydrobiologia 147: 245–255.Google Scholar
  101. Lubzens, E., 1989. Possible use of rotifer resting eggs and preserved live rotifers (Brachionus plicatilis) in aquaculture and mariculture. In De Paw, N., E. Jaspers & H. Ackeford (eds), Aquaculture - A Biotechnology in Progress. Eur. Aquacult. Soc, Bredene, Belgium: 741–750.Google Scholar
  102. Lubzens, E. & G. Minkoff, 1988. Influence of the age of algae fed to rotifers (Brachionus plicatilis O. F. Muller) on the expression of mixis in their progenies. Oecologia 76: 430–435.Google Scholar
  103. Lubzens, E., G. Minkoff & S. Marom, 1985. Salinity dependence of sexual and asexual reproduction in the rotifer Brachionus plicatils. Mar. Biol. 85: 123–126.Google Scholar
  104. Lubzens, E., A. Tandler & G. Minkoff, 1989. Rotifers as food in aquaculture. Hydrobiologia 186/187: 387–400.Google Scholar
  105. Lubzens, E., O. Gibson, O. Zmora & A. Sukenik, 1995a. Potential advantages of frozen algae (Nannochloropsis sp.) for rotifer (Brachionus plicatilis) culture. Aquaculture 133: 295–309.Google Scholar
  106. Lubzens, E., G. Minkoff, Y. Barr & O. Zmora, 1997. Mariculture in Israel-past achievements and future directions in raising rotifers as food for marine fish larvae. Hydrobiologia 358: 13–20.Google Scholar
  107. Lubzens, E., G. Kolodny, B. Perry, N. Galai, R. Sheshinski & Y. Wax, 1990. Factors affecting survival of rotifers (Brachionus plicatilis O. F. Müller) at 4 C. Aquaculture 91: 23–47.Google Scholar
  108. Lubzens, E., D. Rankevich, G. Kolodny, O. Gibson, A. Cohen & M. Khayat, 1995b. Physiological adaptations in the survival of rotifers (Brachionus plicatilis O. F. Muller) at low temperatures. Hydrobiologia 313/314: 175–183.Google Scholar
  109. Maeda, M. & A. Hino, 1991. Environmental management for mass culture of rotifer, Brachionus plicatilis. In Fulks, W. & K. L. Main (eds), Rotifer and Microalgae Culture Systems. Proc. U.S.-Asia Workshop. The Oceanic Institute, Honolulu, HI: 125–133.Google Scholar
  110. Maeda, M., K. Nogami, M. Kanematsu & K. Hirayama, 1997. The concept of biological control method in aquaculture. Hydrobiologia 358: 285–290.Google Scholar
  111. Markridis, P. & Y. Olsen, 1999. Protein depletion of the rotifer Brachionus plicatilis during starvation. Aquaculture 174: 343–353.Google Scholar
  112. Markridis, O., A. J. Fjelheim, J. Skjermo & O. Vadstein, 2000. Control of bacterial flora of Brachionus plicatilis and Artemia franciscana by incubation in bacterial suspensions. Aquaculture 185-207-218.Google Scholar
  113. Markridis, P., O. Bergh, A. J. Fiellheim, J. Skjermo & O. Vadstein, 1999. Microbial control of live food cultures. In Laird, L. & H. Reinertsen (eds), Towards Predictable Quality. Aquaculture Europe 99. Eur. Aquacult. Soc. Spec. Publ. No. 27, Oostende (Belgium): 155–157.Google Scholar
  114. Merchie, G., Pl. Lavens & P. Sorgeloos, 1997. Optimization of dietary vitamin C in fish and crustacean larvae: a review. Aquaculture 155: 165–181.Google Scholar
  115. Minkoff, G., E. Lubzens & D. Kahan, 1983. Environmental facots affecting hatching of rotifer (Brachionus plicatilis) resting eggs. Hydrobiologia 104: 61–69.Google Scholar
  116. Miracle, M. R. & M. Serra, 1989. Salinity and temperature influence on rotifer life history characteristics. Hydrobiologia 186/187: 81–103.Google Scholar
  117. Munilla-Moran, R., J. R. Stark & A. Barbour, 1990. The role of exogenous enzymes in digestion in culture of turbot larvae (Scophthalmus maximus L.). Aquaculture 88: 337–350.Google Scholar
  118. Munro, P. D., R. J. Henderson, A. Barbour & T. H. Birkbeck. 1999. Partial decontamination of rotifers with ultraviolet radiation: the effect of changes in the bacterial load and flora of rotifers on mortalities in start-feeding larval turbot. Aquaculture 170: 229–244.Google Scholar
  119. Nagata, W. D. & H. Hirata, 1986. Mariculture in Japan: Past, present and future prespectives. Min. Rev. Data File Fish. Res. 4: 1–38.Google Scholar
  120. Nagata, W. D. & J. N. C. Whyte, 1992. Effect of yeast and alagal diets on the growth and biochemical composition of the rotifer Brachionus plicatilis (Muller) in culture. Aquacult. Fish. Manage. 1992. 23: 13–21.Google Scholar
  121. Navarro, N. & M. Yufera, 1998a. Influence of the food ration and individual density on production efficiency of semicontinuous cultures of Brachionus-fed mucroalgae dry powder. Hydrobiologia 387/388: 483–487.Google Scholar
  122. Navarro, N. & M. Yufera, 1998b. Population dynamics of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in semicontinuous culture fed freeze-dried microalgae: influence of dilution rate. Aquaculture 166: 297–309.Google Scholar
  123. Nichols, D. S., P. Hart, P. D. Nichols & T. A. McMeekin, 1996. Enrichment of the rotifer Brachionus plicatilis fed an Antarctic bacterium containing polyunsaturated fatty acids. Aquaculture 147: 115–125.Google Scholar
  124. Øie, G. & Y. Olsen, 1997. Protein and lipid content of the rotifer Brachionus plicatilis during variable growth and feeding conditions. Hydrobiologia 358: 251–258.Google Scholar
  125. Øie, G., K. I. Reitan & Y. Olsen, 1994. Comparison of roifer culture quality with yeast plus oil and algal-based cultivation diets. Aquacult. Intern. 2: 225–238.Google Scholar
  126. Olsen, Y., K. I. Reitan & O. Vadstein, 1993. Dependence of temperature on loss rates of rotifers, lipids and ù3 fatty acids in starved Brachionus plicatilis cultures. Hydrobiologia 255/256: 13–20.Google Scholar
  127. Owen, J. M., J. W. Adron, C. Middleton & C. B. Cowey, 1975. Elongation and desaturation of dietary fatty acidsin turbot (Scophthalmus maximus L.) and rainbow trout (Salmo gaidneri Rich). Lipids 10: 528–531.Google Scholar
  128. Polo, A., M. Yufera & E. Pascual, 1992. Feeding and growth of gilthead seabream ( Sparus aurata L.) larvae in relation to size of the rotifer strain used as food. Aquaculture 103: 45–54.Google Scholar
  129. Pourriot, R. and T. W. Snell, 1983. Resting eggs in rotifers. Hydrobiologia 104: 213-224. Rainuzzo, J. R., K. I. Reitan & Y. Olsen, 1994. Effect of short-and long term enrichment on total lipids, lipid class and fatty acid composition. Aquacult. Int. 2: 19-32.Google Scholar
  130. Rainuzzo, J. R., K. I. Reitan & Y. Olsen, 1997. The significance of lipids at early stages of marine fish: a review. Aquaculture 155: 103–115.Google Scholar
  131. Reitan K. I., J. R. Rainuzzo, G. Øie & Y. Olsen, 1993. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture 118: 257–275.Google Scholar
  132. Rombaut, G., Ph. Dhert, J. Vandenberghe, L. Verschuere, P. Sorgeloos & W. Verstraete, 1999a. Selection of bacteria enhancing the growth rate of axenically hatched rotifers (Brachionus plicatilis). Aquaculture 176: 195–207.Google Scholar
  133. Rombaut, G., L. Vershuere, Ph. Dhert, P. Sorgeloos & W. Verstraete, 1999b. Multi-component probiotic for live feed (Brachionus plicatilis) cultures. In Laird, L. & H. Reinertsen (eds), Towards Predictable Quality. Aquaculture Oostende (Belgium): 201–202.Google Scholar
  134. Rumengan, I. F. M. & K. Hirayama, 1990. Growth responses of genetically distict S and L type rotifer (Brachionus plicatilis) strains to different temperatures. In Hirano R. & I. Hanyu (eds), The Second Asian Fisheries Forum. Asian Fisheries Society, Manila, Philippines: 33–35.Google Scholar
  135. Sargent, J. R., L. A. McEvoy & J. G. Bell, 1997. Requirements, presentation and sources of unsaturated fatty acids in marine fish larval feeds. Aquaculture 155: 117–127.Google Scholar
  136. Sargent, J., L. McEvoy, A. Estevez, G. Bell, M. Bell, J. Henderson & D. Tocher, 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture 179: 217–229.Google Scholar
  137. Satuito, C. G. & K. Hirayama, 1991. Supplementary effect of vitamin C and squid oil on the nutritional value of baker's yeast for the population growth of the rotifer Brachionus plicatilis. Bull. Fac. Fish. Nagasaki Univ. 69: 7–11.Google Scholar
  138. Schneider, J. C. A. Livne, A. Sukenik & P. Roussler, 1995. A mutant of Nannochloropsis deficient in eicosapentaenoic acid production. Phytochem. 40: 807–814.Google Scholar
  139. Scott, J. M., 1981. The vitamin B12 requirement of the marine rotifer Brachionus plicatilis. J. mar. biol. Ass. U. K. 61: 983–994.Google Scholar
  140. Skejrmo, J. & O. Vadstein, 1999. Techniques for microbial control in the intensive rearing of marine larvae. Aquaculture 177: 333–343.Google Scholar
  141. Snell, T. W., 1986. Effect of temperature, salinity and food level on sexual and asexual reproduction in Brachionus plicatilis (Rotifera). Mar. Biol. 92: 157–162.Google Scholar
  142. Snell, T. W., 1991. Improving the design of mass culture systems for the rotifer Brachionus plicatilis. In Fulks W. & K. L. Main (eds), Rotifer amdMicroalgae Culture Systems. Proc. U.S.- Asia Workshop. The Oceanic Insitute, Honolulu, HI: 61–71.Google Scholar
  143. Snell, T. W. & K. Carrillo, 1984. Body size variation among strains of the rotifer Brachionus plicatilis. Aquaculture 37: 359–367.Google Scholar
  144. Snell, T.W. & F. H. Hoff, 1985. The effect of environemental factors on resting egg production in the rotifer Brachionus plicatilis. J. World Maricult. Soc. 16: 484–497.Google Scholar
  145. Snell, T. W. & F. H. Hoff, 1988. Recent advances in rotifer culture. Aquaculture Mag. 9/10: 41–45.Google Scholar
  146. Snell, T. W., M. J. Childress, E. M. Boyer & F. H. Hoff, 1987. Assessing the status of rotifer mass cultures. J. World Aquacult. Soc. 18: 270–277.Google Scholar
  147. Suantika, G., P. Dhert, N. Nurhudah & P. Sorgeloos, 2000. Highdensity production of rotifer Brachionus plicatilis in recirculated system: consideration of water quality, zootechnical and nutrient aspects. Aquacult. Engineer. 21: 201–214.Google Scholar
  148. Takeyama, H., K. Iwamoto, S. Hara, H. Takano & T. Matsunaga, 1996. DHA enrichment of rotifers: a simple two-step culture using the unicellular algae Chlorella reularis and Isochrysis galbana. J. Mar. Biotechnol. 3: 244–247.Google Scholar
  149. Tamaru, C. Sau., C.-S. Lee & H. Ako, 1991. Improving the larval rearing of stiped mullet (Mugil cephalus) by manipulating quantity and quality of the rotifer, Brachionus plicatilis. In Fulks W. & K. L. Main (eds), Rotifer and Microalgae Culture Systems. Proc. U.S.-Asia Workshop. The Oceanic Insitute, Honolulu, HI: 61–71.Google Scholar
  150. Tamaru, C. S., R. Murashige, C.-S. Lee, H. Ako & V. Sato, 1993. Rotifers fed various diets of baker's yeast and/or Nannochloropsis oculata and their effect on the growth and survival of striped mullet (Mugil cephalus) and milkfish (Chanos chanos) larvae. Aquaculture 110: 361–372.Google Scholar
  151. Tandler, A., 1985/1985. Overview: food for the larval stages of marine fish. Live or inert? Isr. J. Zool. 33: 161–166.Google Scholar
  152. Teshima, S.-I., A. Kanazawa, K. Horinouchi, S. Yamasaki & H. Hirata, 1987. Phospholipids of the rotifer, prawn and larval fish. Nippon Suisan Gakkaishi 53: 609–615.Google Scholar
  153. Theilacker, G. & K. Dorsey, 1980. Larval fish diversity. A summary of laboratory and field research. Workshop on the effects of environmental variation on the survival of larval pelagic fishes. Intergovernmental Oceanic Commision Workshop Rep. 28: 105–142.Google Scholar
  154. Toledo, J. D. & H. Kurokura, 1990. Cryopreservation of the euryhaline rotifer Brachionus plicatilis embryos. Aquaculture 91: 385–394.Google Scholar
  155. Toledo, J. D., H. Kurokura & H. Nakagawa, 1991. Cryopreservation of different strains of the euryhaline rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 57: 1347–1350.Google Scholar
  156. Vadstein, O., G. Øie & O. Olsen, 1993. Particle size dependent feeding by the rotifer Brachionus plicatilis. Hydrobiologia 255/256: 261–267.Google Scholar
  157. Verpraet, R., M. Chair, P. Leger, H. Nelis, P. Sorgeloos & A. De Leenheer, 1992. Live-Food mediated drug delivery as a tool for disease treatment in Larviculture. The enrichment of therapeutics in rotifers and Artemia Nauplii. Aquacult. Engineer. 11: 133–139.Google Scholar
  158. Verdonck, L., L. Grisez, E. Sweetman, G. Minkoff, P. Sogeloos, O. Ollevier & J. Swings, 1997. Vibrio associated with routine production of Brachionus plicatilis. Aquaculture 149: 203–214.Google Scholar
  159. Walford, J. & T. J. Lam, 1993. Development of digestive tract and proteolytic enzyme activity in seabass (Lates calcarifer) larvae and juveniles. Aquaculture 109: 187–205.Google Scholar
  160. Walz, N., 1993. Plankton Regulation Dynamics. Experiments and Models in Rotifer Continuous Cultures. Springer Verlag, Berlin (Germany). Ecol. Stud. 98: 308 pp.Google Scholar
  161. Walz, N., T. Hintze & R. Rusche, 1997. Algae and rotifer turbidostatas: studies on stability of live food cultures. Hydrobiologia 358: 127–132.Google Scholar
  162. Watanabe, T., C. Kitajima & S. Fujita, 1983. Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34: 115–143.Google Scholar
  163. Wesenberg-Lund, C., 1923. Contribution to the biology of the Rotifera, I. The males of Rotifera. Kgl. Dansk Vid. Selsk. Skr. Nat. math. Afd. Ser. 8, 4: 190–345.Google Scholar
  164. Whyte, J. N. C. & W. D. Nagata, 1990. Carbohydrate and fatty acid composition of the rotifer, Brachionus plicatilis, fed monospecific diets of yeast and phytoplankton. Aquaculture: 89: 263–368.Google Scholar
  165. Yoshimura, K., A. Hagiwara, T. Yoshimatsu & C. Kitajima, 1996. Culture technology of marine rotifers and implication for intensive culture of marine fish in Japan. Mar. freshwat. Res. 47: 217–222.Google Scholar
  166. Yoshimura, K., K. Usuki, T. Yoshimatsu, C. Kitajima & A. Hagiwara, 1997. Recent developments of a high density mass culture system for the rotifer Brachionus rotundiformis Tschugunoff. Hydrobiologia 358: 139–144.Google Scholar
  167. Yu, J. & K. Hirayama, 1986. The effect of un-ionized ammonia on the population growth of the rotifer in mass culture. Bull. Jap. Soc. Sci. Fish. 52: 1509–1513.Google Scholar
  168. Yu, J.-P., A. Hino, R. Hirano & K. Hirayama, 1988. Vitamin B12 producing bacteria as a nutritive complement for the culture of the rotifer Brachionus plicatilis. Nippon. Suisan Gakkaishi 54: 1873–1880.Google Scholar
  169. Yu, J.-P., A. Hino, M. Ushiro & M. Maeda, 1989. Function of bacteria as vitamin B12 producers during mass culture of the rotifer Brachionus plicatilis. Nippon. Suisan Gakkaishi 55: 1799–1806.Google Scholar
  170. Yu, J.-P., A. Hino, R. Hirano & K. Hirayama, 1990a. The role of bacteria in mass culture of the rotifer Brachionus plicatilis. In Hirano, R. & I. Hanyu (eds), The Second Fisheries Society. Manila, Philippines: 29–32.Google Scholar
  171. Yu, J.-P., A. Hino, T. Noguchi & H. Wakabayashi, 1990b. Toxicity of Vibrio alginolyticus on the survival of the rotifer Brachionus plicatilis. Nippon Suisan Gakkaishi 56: 1455–1460.Google Scholar
  172. Yufera, M. & E. Pascual, 1989. Biomass and elemental composition (C.H.N.) of the rotifer Brachionus plicatilis cultured as larval food. Hydrobiologia 186/187: 371–374.Google Scholar
  173. Yufera, M. & N. Navarro, 1995. Population growth dynamic of the rotifer Brachionus plicatilis cultured in non-limiting food condition. Hydrobiologia 313/314: 399–405.Google Scholar
  174. Yufera, M., G. Parra & E. Pascual, 1997. Energy content of rotifers (Brachionus plicatilis and Brachionus rotundiformis) in relation to temperature. Hydrobiologia 358: 83–87.Google Scholar
  175. Zmora, O., 1991. Management, production and disease interaction in rotifer culture. In Lavens P., P. Sorgeloos, E. Jaspers & F. Ollevier (eds), Larvi’ 91 - Fish and Crustacean Larviculture Symposium. Eur. Aquacult. Soc. Spec. Publ. 15, Ghent (Belgium): 104 pp.Google Scholar
  176. Zmora, O., Y. Barr & A. Tandler, 1991. Report on a visit to several European commercial fish hatcheries (in Hebrew). Israel Oceanographic and Limnological Research Reports: 63 pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • Esther Lubzens
    • 1
  • Odi Zmora
    • 2
  • Yoav Barr
    • 3
  1. 1.Israel Oceanographic and Limnological ResearchNational Institute of OceanographyHaifaIsrael
  2. 2.National Center for MaricultureEilatIsrael
  3. 3.National Center for MaricultureEilatIsrael

Personalised recommendations