Skip to main content
Log in

Implantation parameters affecting aluminum nano-particle formation in alumina

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The formation of nano-dimensional metallic Al precipitates in alumina due to the reduction of the host matrix as a result of ambient temperature ion implantation of Y ions is examined. The formation and growth of Al precipitates are dependent on both the Y ion dose and the energy available to the matrix, as reported here. Reducing the ion dose from 5 × 1016 to 2.5 × 1016 ions/cm2 results in smaller precipitates; 10.7 ± 1.8 nm to 9.0 nm ± 1.2 nm, respectively, for incident ion energies of 150 keV, based upon particle size measurements obtained using energy filtered transmission electron microscopy. Below a fluence of 2.5 × 1016, particle formation is not detected. The energy available to the matrix was varied; first, by controlling the incident ion energy (varied between 60 and 150 keV) while holding the substrate at ambient temperature, and second, by controlling the substrate temperature (varied between 44 and 873 K) while holding the incident ion energy constant at 150 keV. Experiments conducted with incident ion energies of 110 keV or higher produce crystalline Al precipitates; whereas implantations at 100 keV produce amorphous Al particles and implantations at 60 keV produce no detectable precipitates. The implantations carried out as a function of temperature produce successively smaller precipitates with decreasing temperature to 77 K (6.7 ± 1.0 nm), below which no precipitates are detected. An Arrhenius activation energy for the formation of the aluminum precipitates of 1.7 kJ/mole has been calculated using the volume of precipitates formed as a function of inverse temperature. This low activation energy suggests that radiation enhanced diffusion (RED) is responsible for particle growth during these implantations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. W. White, D. S. Zhou, J. D. Budai, R. A. Zuhr, R. H. Magruder and D. H. Osborne,Mat. Res. Soc. Symp. Proc.316 (1994) 499.

    Google Scholar 

  2. A. P. Mouritz, D. K. Sood, D. H. St. John, M. V. McSwain and S. J. Williams, Nuc. Inst. and Meth.B B19/20 (1987)805.

    Google Scholar 

  3. R. F. Haglund Jr., L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville and R. R. Alfano, ibid.91 (1994) 493.

    Google Scholar 

  4. J. Allegre, G. Arnaud, H. Mathieu, P. Lefebvre, W. Granier and L. Bondes, J. Crys. Growth 138 (1994) 998.

    Google Scholar 

  5. F. L. Freire, N. Broll and G. Mariotto, Mat. Res. Soc. Symp. Proc. 396 (1996) 385.

    Google Scholar 

  6. L. Romana, P. Thevenard, B. Canut, G. Massouras, R. Brenier and M. Brunel, Nuc. Inst. and Meth. B B46 (1990) 94.

    Google Scholar 

  7. P. S. Sklad, C. J. McHargue, C. W. White and G. C. Farlow,J. Mater. Sci.27(21) (1992) 5895.

    Google Scholar 

  8. C. J. McHargue, S. Ren, P. S. Sklad, L. F. Allard and J. Hunn, Nuc. Inst. and Meth. B B116 (1996) 173.

    Google Scholar 

  9. M. Ohkubo and N. Suzuki,Phil. Mag. Lett. 57(5) (1988) 261.

    Google Scholar 

  10. C. W. White, J. D. Budai, S. P Withrow, S. J. Pennycook, D. M. Hembree, D. S. Zhou, T. Vo-Dihn and R. H. Magruder, Mat. Res. Soc. Symp. Proc.316 (1994) 487.

    Google Scholar 

  11. E. M. Hunt and J. M. Hampikian, J. Mater. Sci.32 (1997) 3393.

    Google Scholar 

  12. Idem., Acta Materialia 47(5) (1999) 1497.

    Google Scholar 

  13. A. E. Hughes, Rad. Eff. 74 (1983) 57.

    Google Scholar 

  14. A. B. Scott, W. A. Smith and M. A. Thompson, J. Physical Chem. 57 (1953) 757.

    Google Scholar 

  15. N. G. Politov and L. F. Vorozheikina, Sov. Phys.-Solid State.12 (1970) 237.

    Google Scholar 

  16. P. Vajda and F. Beuneu, Nuc. Inst. and Meth. B 116 (1996) 183.

    Google Scholar 

  17. B. D. Evans and M. Stapelbroek, Phys. Rev. B 18(12) (1978) 7089.

    Google Scholar 

  18. T. Shikama and G. P. Pells, Phil. Mag. A 47(3) (1983) 369.

    Google Scholar 

  19. J. M. Bunch, J. G. Hoffman and A. H. Zeltmann, J. Nuc. Mat. 73 (1978) 65.

    Google Scholar 

  20. E. M. Hunt, J. M. Hampikian, D. B. Poker and N. D. Evans, Surface and Coatings Technology 103/104 (1998) 409.

    Google Scholar 

  21. E. M. Hunt, J. M. Hampikian and N. D. Evans, in “Microscopy and Microanalysis” edited by G.W. Bailey et al., (Minneapolis, MN, 1996) p.534.

  22. E. M. Hunt, Z. L. Wang, N. D. Evans and J. M. Hampikian, in “Microscopy and Microanalysis” (Minneapolis, MN, 1997).

  23. Idem.,Micron. 29(2/3) (1998) 191.

    Google Scholar 

  24. PROFILE Ion Implantation Code, Implant Sciences Corp., 35 Cherry Hill Drive, Danvers MA 09123, (508) 777–5110.

  25. E. M. Hunt, Ph.D. Thesis, Georgia Institute of Technology, 1998.

  26. P. Kofstad, “High Temperature Corrosion,” (Elsevier Applied Science, New York, 1988) Chapter 4.

    Google Scholar 

  27. M. W. Brumm and H. J. Grabke, Corrosion Science 33(11) (1992) 1677.

    Google Scholar 

  28. K. Maki, M. Shioda, M. Sayashi, T. Shimizu and S. Isobe, Materials Science and Engineering A153 (1992) 591.

    Google Scholar 

  29. P. Mazzoldi and A. Miotello, ibid. A115 (1989) 1.

    Google Scholar 

  30. G. Arnold, G. Battaglin, G. Della Mea, G. DeMARCHI, P. MAZZOLDI and A. MIOTELLO, Nuc. Inst. and Meth. B 32 (1998) 315.

    Google Scholar 

  31. J. C. Pivin and P. Colombo, ibid.122 (1997) 522.

    Google Scholar 

  32. K. Neubeck, H. Hahn, A. G. Balogh, H. Baumann, K. Bethge, D. M. Rueck and N. Angert, J. of Mater Res. 11 (1996) 1277.

    Google Scholar 

  33. P. J. Burnett and T. F. Page, J. Mater. Sci. 19 (1984) 3524.

    Google Scholar 

  34. C. W. White, L. A. Boatner, P. S. Sklad, C. J. McHARGUE, J. RANKIN, G. C. FARLOW and M. J. AZIZ, Nuc. Inst. and Meth. B B32 (1988) 11.

    Google Scholar 

  35. A. Tsuge, K. Mizuno, T. Uno and K. Tatsumi, Nippon Kizoku Gakkaishi 59 (1995) 1095.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunt, E.M., Hampikian, J.M. Implantation parameters affecting aluminum nano-particle formation in alumina. Journal of Materials Science 36, 1963–1973 (2001). https://doi.org/10.1023/A:1017562311310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017562311310

Keywords

Navigation