Skip to main content
Log in

Electrochemical and surface properties of aluminium in citric acid solutions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical and surface properties of aluminium in 0.05 M citric acid solutions of pH 2–8 were studied by means of open circuit potential (OCP), potentiodynamic polarization and potentiostatic current–time transient measurements. The OCP reached a steady-state value very slowly, probably due to the slow rate of detachment of surface complexes into the solution. Aluminium exhibits passive behaviour in citric acid solutions of pH 4–8. Tafel slopes b c were characteristic for hydrogen evolution on aluminium covered by an oxide film. The corrosion kinetic parameters E corr, i corr and b a suggest that surface processes are involved in the dissolution kinetics, especially in the pH range 3–6. Current–time transient measurements confirm that, in citric acid solutions of pH 3–6, the dissolution is controlled by surface processes, that is, by the rate of detachment of surface complexes, while in solutions of pH 2, 7 and 8 dissolution is under mass-transport control. The addition of fluoride ions to citric acid changes the controlling steps of the dissolution process. Citrate and fluoride ions compete for adsorption sites at the oxide surface, and adsorption of these ions is a competitive and reversible adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Deltombe, C. Vanleugenhaghe and M. Pourbaix, Aluminium, in M. Pourbaix (Ed.), 'Atlas of Electrochemical Equilibria in Aqueous Solutions' (Pergamon Press-Cebelcor, Oxford and Brussels, 1966), pp. 168–176.

    Google Scholar 

  2. T. Hurlen, H. Lian, O.S. Ødegard and T. Valand, Electrochim. Acta 29 (1984) 579.

    Google Scholar 

  3. W. Wilhelmsen and A.P. Grande, Electrochim. Acta 33 (1988) 927.

    Google Scholar 

  4. M. Metikoš-Huković, R. Babić, Z. Grubač and S. Brinić, J. Appl. Electrochem. 24 (1994) 325.

    Google Scholar 

  5. M. Metikoš-Huković, R. Babić, Z. Grubač and S. Brinić, J. Appl. Electrochem. 24 (1994) 772.

    Google Scholar 

  6. H.J.W. Lenderink, M.v.d. Linden and J.H.W. de Wit, Electrochim. Acta 38 (1993) 1989.

    Google Scholar 

  7. S.-M. Moon, S.-I. Pyun, Electrochim. Acta 44 (1999) 2445.

    Google Scholar 

  8. K.F. Lorking and J.E.O. Mayne, J. Appl. Chem. 11 (1961) 170.

    Google Scholar 

  9. S. Evans and E.L. Koehler, J. Electrochem. Soc. 108 (1961) 509.

    Google Scholar 

  10. M.S. Abdel-Aal, M.T. Makhlouf and A.A. Hermas, J. Electrochem. Soc. India 42 (1993) 165.

    Google Scholar 

  11. M. Katoh, Corros. Sci. 8 (1968) 423.

    Google Scholar 

  12. V. Žutić and W. Stumm, Geochim. Cosmochim. Acta 48 (1984) 1493.

    Google Scholar 

  13. L. Kobotiatis, N. Pebere and P.G. Koutsoukos, Corros. Sci. 41 (1999) 941.

    Google Scholar 

  14. G. Furrer and W. Stumm, Chimia 37 (1983) 338.

    Google Scholar 

  15. G. Furrer and W. Stumm, Geochim. Cosmochim. Acta 50 (1986) 1847.

    Google Scholar 

  16. W. Stumm, G. Furrer and B. Kunz, Croat. Chem. Acta 56 (1983) 593.

    Google Scholar 

  17. G.A. Hutchins and C.T. Chen, J. Electrochem. Soc. 133 (1986) 1332.

    Google Scholar 

  18. K. Shimizu, G.M. Brown, H. Habazaki, K. Kobayashi, P. Skeldon, G.E. Thompson and G.C. Wood, Electrochim. Acta 44 (1999) 2297.

    Google Scholar 

  19. P.L. Cabot, F.A. Centellas, J.A. Garrido and E. Perez, J. Appl. Electrochem. 17 (1987) 104.

    Google Scholar 

  20. Model 352/252 Corrosion Analysis Software 2.01 Instruction Manual, EG&G PAR, New Jersey (1992).

  21. M.J. Dignam, Mechanisms of ionic transport through oxide films, in J.W. Diggle (Ed.), 'Oxides and Oxide Films', Vol. 1 (Marcel Dekker, New York, 1972), pp. 168–169.

    Google Scholar 

  22. S.M. Ahmed, Electrical double layer at metal oxide-solution interfaces, in J.W. Diggle (Ed.), Vol. 1, op. cit. [21], pp. 412–443.

    Google Scholar 

  23. G.A. Parks, Chem. Rev. 65 (1965) 177.

    Google Scholar 

  24. G. Sposito (Ed.), 'The Environmental Chemistry of Aluminum' (Lewis Publishers, Boca Raton, 1996), pp. 173–174 and 303–305.

    Google Scholar 

  25. P.C. Hidber, T.J. Graule and L.J. Gauckler, J. Am. Ceram. Soc. 79 (1996) 1857.

    Google Scholar 

  26. V.F. Surganov, Russ. J. Electrochem. 30 (1994) 742.

    Google Scholar 

  27. J.O'M. Bockris and A.K.N. Reddy, 'Modern Electrochemistry', Vol. 2 (Plenum Press, New York, 1974), pp. 862–910.

    Google Scholar 

  28. A.K. Vijh, J. Phys. Chem. 73 (1969) 506.

    Google Scholar 

  29. A.K. Vijh, Anodic oxide films: Influence of solid-state properties on electrochemical behaviour, in J.W. Diggle (Ed.), Vol. 2 (1973), op. cit. [21], pp. 70–78.

    Google Scholar 

  30. L.-O. Öhman, Inorg. Chem. 27 (1988) 2565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šeruga, M., Hasenay, D. Electrochemical and surface properties of aluminium in citric acid solutions. Journal of Applied Electrochemistry 31, 961–967 (2001). https://doi.org/10.1023/A:1017556323508

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017556323508

Navigation