Abstract
New numerical solutions of 3+1D covariant kinetic theory are reported for nuclear collisions in the energy domain Ecm∼200 AGeV. They were obtained using the MPC 0.1.2 parton transport code employing high parton subdivision to retain Lorentz covariance. The solutions are compared to those of relativistic hydrodynamics employing Cooper–Frye isotherm freeze-out. The transport solutions follow a different dynamical path than hydrodynamics due to large dissipative effects when pQCD scattering rates and HIJING initial conditions are assumed. The transport freeze-out four-volume is sensitive to the reaction rates. The final transverse momentum distributions are found to deviate by up to an order of magnitude from those of Cooper–Frye frozen hydrodynamics.
Similar content being viewed by others
REFERENCES
C. Bernard et al. [MILC Collaboration], Phys. Rev. D 55, 6861 (1997) [hep-lat_ 9612025].
B. B. Back et al., PHOBOS Collaboration, hep-ex/0007036.
K. H. Ackermann et al. [STAR Collaboration], nucl-ex/0009011.
L. P. Csernai, Introduction to Relativistic Heavy Ion Collisions (Wiley, New York, 1994), p.1.
D. Molnar and M. Gyulassy, Phys. Rev. C 62, 054907 (2000) [nucl-th/0005051].
D. H. Rischke and M. Gyulassy, Nucl. Phys. A 608, 479 (1996) [nucl-th/9606039].
K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and K. Tuominen, Nucl. Phys. B 570, 379 (2000) [hep-ph/9909456].
M. Gyulassy and L. McLerran, Phys. Rev. C 56, 2219 (1997) [nucl-th/9704034].
J. P. Blaizot and A. H. Mueller, Nucl. Phys. B 289, 847 (1987).
X. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).
X. Wang, Phys. Rept. 280, 287 (1997) [hep-ph/9605214].
X. Wang and M. Gyulassy, nucl-th_0008014.
A. Dumitru and M. Gyulassy, hep-ph_0006257, Phys. Lett. B, in press.
M. Gyulassy, Y. Pang, and B. Zhang, Prog. Theor. Phys. Suppl. 129, 21 (1997); Nucl. Phys. A 626, 999 (1997) [nucl-th/9709025].
M. Aggarwal et al., WA98, Nucl. Phys. A 610, 200c (1996).
S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B B74, 27 (2000).
B. Zhang, M. Gyulassy, and C. M. Ko, Phys. Lett. B 455, 45 (1999) [nucl-th/9902016].
S. R. de Groot, Relativistic Kinetic Theory: Principles and Applications (North-Holland, Amsterdam, 1980), p. 1.
L. P. Horwitz, hep-th/9807005. L. Burakovsky and L. P. Horwitz, Found. Phys. 25, 1335 (1995) [hep-th/9508122].
B. Zhang, Comput. Phys. Commun. 109, 193 (1998) [nucl-th/9709009].
D. Molnár, MPC 0.1.2. This parton cascade code used in the present study can be down-loaded from WWW at http://www-cunuke.phys.columbia.edu/people/molnard.
Proceedings of Open Standards for Cascade Models for RHIC (OSCAR), BNL-64912, June 23/27, 1997, Miklos Gyulassy and Y. Pang, eds. Source codes and documentation for transport models under the OSCAR standard can be downloaded from the OSCAR WWW site http://www-cunuke.phys.columbia.edu/OSCAR/.
M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, J. Phys. G 25, 1859 (1999) [hep-ph/ 9909407].
D. Molnaár, Nucl. Phys. A 661, 236c (1999).
L. P. Csernai, Z. Lázár, and D. Molnár, Heavy Ion Phys. 5, 467 (1997).
D. H. Rischke, S. Bernard, and J. A. Maruhn, Nucl. Phys. A 595,346 (1995). A. Dumitru and D. H. Rischke, Phys. Rev. C 59, 354 (1999).
F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974). 894 Gyulassy and Molna_ r
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Gyulassy, M., Molnár, D. Covariant Non-Equilibrium Transport Theory Solutions for RHIC. Foundations of Physics 31, 875–894 (2001). https://doi.org/10.1023/A:1017555800429
Issue Date:
DOI: https://doi.org/10.1023/A:1017555800429