Skip to main content
Log in

Covariant Non-Equilibrium Transport Theory Solutions for RHIC

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

New numerical solutions of 3+1D covariant kinetic theory are reported for nuclear collisions in the energy domain Ecm∼200 AGeV. They were obtained using the MPC 0.1.2 parton transport code employing high parton subdivision to retain Lorentz covariance. The solutions are compared to those of relativistic hydrodynamics employing Cooper–Frye isotherm freeze-out. The transport solutions follow a different dynamical path than hydrodynamics due to large dissipative effects when pQCD scattering rates and HIJING initial conditions are assumed. The transport freeze-out four-volume is sensitive to the reaction rates. The final transverse momentum distributions are found to deviate by up to an order of magnitude from those of Cooper–Frye frozen hydrodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Bernard et al. [MILC Collaboration], Phys. Rev. D 55, 6861 (1997) [hep-lat_ 9612025].

    Google Scholar 

  2. B. B. Back et al., PHOBOS Collaboration, hep-ex/0007036.

  3. K. H. Ackermann et al. [STAR Collaboration], nucl-ex/0009011.

  4. L. P. Csernai, Introduction to Relativistic Heavy Ion Collisions (Wiley, New York, 1994), p.1.

    Google Scholar 

  5. D. Molnar and M. Gyulassy, Phys. Rev. C 62, 054907 (2000) [nucl-th/0005051].

    Google Scholar 

  6. D. H. Rischke and M. Gyulassy, Nucl. Phys. A 608, 479 (1996) [nucl-th/9606039].

    Google Scholar 

  7. K. J. Eskola, K. Kajantie, P. V. Ruuskanen, and K. Tuominen, Nucl. Phys. B 570, 379 (2000) [hep-ph/9909456].

    Google Scholar 

  8. M. Gyulassy and L. McLerran, Phys. Rev. C 56, 2219 (1997) [nucl-th/9704034].

    Google Scholar 

  9. J. P. Blaizot and A. H. Mueller, Nucl. Phys. B 289, 847 (1987).

    Google Scholar 

  10. X. Wang and M. Gyulassy, Phys. Rev. D 44, 3501 (1991).

    Google Scholar 

  11. X. Wang, Phys. Rept. 280, 287 (1997) [hep-ph/9605214].

    Google Scholar 

  12. X. Wang and M. Gyulassy, nucl-th_0008014.

  13. A. Dumitru and M. Gyulassy, hep-ph_0006257, Phys. Lett. B, in press.

  14. M. Gyulassy, Y. Pang, and B. Zhang, Prog. Theor. Phys. Suppl. 129, 21 (1997); Nucl. Phys. A 626, 999 (1997) [nucl-th/9709025].

    Google Scholar 

  15. M. Aggarwal et al., WA98, Nucl. Phys. A 610, 200c (1996).

    Google Scholar 

  16. S. A. Voloshin and A. M. Poskanzer, Phys. Lett. B B74, 27 (2000).

    Google Scholar 

  17. B. Zhang, M. Gyulassy, and C. M. Ko, Phys. Lett. B 455, 45 (1999) [nucl-th/9902016].

    Google Scholar 

  18. S. R. de Groot, Relativistic Kinetic Theory: Principles and Applications (North-Holland, Amsterdam, 1980), p. 1.

    Google Scholar 

  19. L. P. Horwitz, hep-th/9807005. L. Burakovsky and L. P. Horwitz, Found. Phys. 25, 1335 (1995) [hep-th/9508122].

    Google Scholar 

  20. B. Zhang, Comput. Phys. Commun. 109, 193 (1998) [nucl-th/9709009].

    Google Scholar 

  21. D. Molnár, MPC 0.1.2. This parton cascade code used in the present study can be down-loaded from WWW at http://www-cunuke.phys.columbia.edu/people/molnard.

  22. Proceedings of Open Standards for Cascade Models for RHIC (OSCAR), BNL-64912, June 23/27, 1997, Miklos Gyulassy and Y. Pang, eds. Source codes and documentation for transport models under the OSCAR standard can be downloaded from the OSCAR WWW site http://www-cunuke.phys.columbia.edu/OSCAR/.

  23. M. Bleicher, E. Zabrodin, C. Spieles, S. A. Bass, C. Ernst, S. Soff, L. Bravina, M. Belkacem, H. Weber, H. Stöcker, and W. Greiner, J. Phys. G 25, 1859 (1999) [hep-ph/ 9909407].

    Google Scholar 

  24. D. Molnaár, Nucl. Phys. A 661, 236c (1999).

    Google Scholar 

  25. L. P. Csernai, Z. Lázár, and D. Molnár, Heavy Ion Phys. 5, 467 (1997).

    Google Scholar 

  26. D. H. Rischke, S. Bernard, and J. A. Maruhn, Nucl. Phys. A 595,346 (1995). A. Dumitru and D. H. Rischke, Phys. Rev. C 59, 354 (1999).

    Google Scholar 

  27. F. Cooper and G. Frye, Phys. Rev. D 10, 186 (1974). 894 Gyulassy and Molna_ r

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gyulassy, M., Molnár, D. Covariant Non-Equilibrium Transport Theory Solutions for RHIC. Foundations of Physics 31, 875–894 (2001). https://doi.org/10.1023/A:1017555800429

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017555800429

Keywords

Navigation