Skip to main content
Log in

New Effect for Detecting Gravitational Waves by Amplification with Electromagnetic Radiation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The perturbation of Dirac particles moving in a constant magnetic field is calculated for simultaneously incident parallel monochromatic circular polarized electromagnetic and gravitational waves. Resonances are found which depend on the initial energy of the charged particles, the magnetic field, and the frequencies of the incident waves. A suited choice of these parameters allows the selection of only one resonance that is proportional to the product of the squares of the amplitudes of both waves. This effect is valid for all bound systems of Dirac particles interacting simultaneously with electromagnetic and gravitational waves. At least in principle this resonance effect can be used to detect the gravitational waves in the lab. For regions of the universe with strong electromagnetic and gravitational waves and suited magnetic fields this effect may play another important part for the acceleration of charged particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Abramovici, A., Althouse, W. E., Drever, R. W. P., Gürsel, Y., Kawamura, S., Raab, F. J., Shoemaker, D., Sievers, L., Spero, R. E., Thorne, K. S., Vogt, R. E., Weiss, R., Whitcomb, S. E., and Zucker, M. E. (1992). LIGO: The laser interferometer gravitational-wave observatory, Science 256, 325.

    Google Scholar 

  • Abramovici, A., Althouse, W., Camp, J., Durance, D., Giaime, J. A., Gillespie, A., Kawamura, S., Kuhnert, A., Lyons, T., Raab, F. J., Savage Jr., R. L., Shoemaker, D., Sievers, L., Spero, R., Vogt, R., Weiss, R., Whitcomb, S., and Zucker, M. (1996). Improved sensitivity in a gravitational wave interferometer and implications for LIGO, Physics Letters A 218, 157.

    Google Scholar 

  • Abramowitz, M. and Stegun, I. A. (1968). Handbook of Mathematical Functions, Dover Publications, New York, pp. 509ff, 773ff.

    Google Scholar 

  • Adler, R., Bazin, M., and Schiffer, M. (1965). Introduction to General Relativity, McGraw-Hill, New York.

    Google Scholar 

  • Babusci, D., Fang, H., Giordano, G., Matone, G., Matone, L., and Sannibale, V. (1997). Alignment procedure for the VIRGO interferometer: Experimental results from the Frascati prototype, Physics Letters A 226, 31.

    Google Scholar 

  • Braginskij, V. B., Manukin, A. B., Popov, E. I., Rudenko, V. N., and Khoren, A. A. (1972). Search for gravitational radiation of extraterrestrial origin, JETP Letters 16, 108.

    Google Scholar 

  • Braginskij, V. B. and Rudenko, V. N. (1970). Relativistic gravitational experiments, Soviet Physics-Uspekhi 13, 165.

    Google Scholar 

  • Brill, D. R. and Wheeler, J. A. (1957). Interaction of neutrinos and gravitational fields, Reviews of Modern Physics 29, 465.

    Google Scholar 

  • Brunner, W. and Junge, K. (1989). Lasertechnik, Dr. Alfred Hüthig Verlag, Heidelberg.

    Google Scholar 

  • Caldwell, R. R., Kamionkowski, M., and Wadley, L. (1999). The first space-based gravitational-wave detectors, Physical Review D 59, 027101.

    Google Scholar 

  • Drever, R. W. P., Hough, J., Bland, R., Lessnoff, G. W. (1973). Search for short bursts of gravitational radiation, Nature 246, 340.

    Google Scholar 

  • Harry, G. M., Stevenson, T. R., and Paik, H. J. (1996). Detectability of gravitational wave events by spherical resonant-mass antennas, Physical Review D 54, 2409.

    Google Scholar 

  • Ketsaris, A. A. (1974). Gravitational field of a plane electromagnetic wave, Soviet Physics Journal 17, 689.

    Google Scholar 

  • Landau, L. D. and Lifschitz, E. M. (1966). Lehrbuch der theoretischen Physik, Akademie-Verlag-Berlin, Berlin, Vol. 2.

    Google Scholar 

  • Levine, J. L. and Garwin, R. L. (1973). Absence of gravity-wave signals in a bar at 1695 Hz, Physical Review Letters 31, 173.

    Google Scholar 

  • Macedo, P. and Nelson, H. (1990). Perturbation of Larmor orbits by a gravitational wave, Astrophysical Journal 362, 584.

    Google Scholar 

  • Maischberger, K., Rüdiger, A., Schilling, R., Schnupp, L., Winkler, W., Leuchs, G. (1991). Status of the garching 30 meter prototype for a large gravitationalwave detector. In Experimental Gravitational Physics, P. F. Michelson, En-Ke Hu, and G. Pizzella, eds., World Scientific, Singapore, pp. 316–321.

    Google Scholar 

  • Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, W. H. Freeman, San Francisco.

    Google Scholar 

  • Papadopoulos, D. and Esposito, F. P. (1981). On the transformation of gravitational radiation into electromagnetic radiation, Astrophysical Journal 148, 783.

    Google Scholar 

  • Redmond, P. J. (1965). Solution of the Klein-Gordon and Dirac equations for a particle with a plane electromagnetic wave and a parallel magnetic field, Journal of Mathematical Physics 6, 1163.

    Google Scholar 

  • Schnier, D., Mizuno, J., Heinzel, G., Lück, H., Rüdiger, A., Schilling, R., Schrembel, M., Winkler, W., Danzmann, K. (1997). Power recycling in the Garching 30 m prototype interferometer for gravitational-wave detection, Physics Letters A 225, 210.

    Google Scholar 

  • Schutz, B. F. (1997). Relativistic gravitation and gravitational radiation. In Proceedings of the Les Houches School of Physics, Les Houches, Haute Savoie, 26 September–6 October, 1995, J.-A. Marck and J.-P. Lasota, eds., Cambridge University Press, Cambridge, pp. 447–475.

    Google Scholar 

  • Shaddock, D. A., Gray, M. B., and McClelland, D. E. (1998). Experimental demonstration of resonant sideband extraction in a Sagnac interferometer, Applied Optics 37, 7995.

    Google Scholar 

  • Sokolov, A. A. and Ternov, I. M. (1968). Synchrotron Radiation, Akademie-Verlag-Berlin, Berlin.

    Google Scholar 

  • Tyson, J. A. (1973). Null search for bursts of gravitational radiation, Physical Review Letters 31, 326.

    Google Scholar 

  • Weber, J. (1960). Detection and generation of gravitational waves, Physical Review 117, 306.

    Google Scholar 

  • Weber, J. (1969). Evidence for discovery of gravitational radiation, Physical Review Letters 22, 1320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schorn, HJ. New Effect for Detecting Gravitational Waves by Amplification with Electromagnetic Radiation. International Journal of Theoretical Physics 40, 1427–1452 (2001). https://doi.org/10.1023/A:1017553427357

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017553427357

Keywords

Navigation