Skip to main content
Log in

Finite element simulation of microindentation on aluminum

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vickers indentation of 6061-T6 aluminum was modeled using a three-dimensional finite element analysis (FEA) program. Two different work hardening behaviors were assumed. The results were compared with actual indentations using both a static microindenter and a load and depth recording microindenter. The hardness and plastic flow behavior showed excellent agreement, validating the FEA model, and implying that the work hardening of the aluminum decreases past a compressive strain of 0.09. The unloading results were analyzed using Sneddon's solution for the indentation of an elastic half-space by a rigid axisymmetric indenter. The results confirm the validity of applying Sneddon's solution in this case, implying that Bolshakov and Pharr's corrections of Sneddon's solution (which were determined for a conical indenter) are not directly applicable tothe Vickers indenter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Tabor, “Hardness of Metals” (Chapman & Hall, London, 1951).

    Google Scholar 

  2. R. Hill, “The Mathematical Theory of Plasticity” (Clarendon Press, Oxford,1950).

    Google Scholar 

  3. W. Hirst and M. G. J. W. Howse, Proc. Roy. Soc.A311 (1969) 429.

    Google Scholar 

  4. K. L. Johnson. J. Mech. Phys. Solids 18 (1970) 115.

    Google Scholar 

  5. A. E. Giannakopoulos, P. L. Larsson and R. Vestergaard, Int. J. Solids Str.31 (1994) 2679.

    Google Scholar 

  6. K. Zeng, E. SÖderlund, A. E. Giannakopoulos and D. J. Rowcliffe, Acta Mater.44 (1996) 1127.

    Google Scholar 

  7. I. N. Sneddon, Int. J. Engng. Sci.3 (1965).

  8. R. B. King, Int. J. Solids Str.23 (1987) 1657.

    Google Scholar 

  9. G. M. Pharr, W. C. Oliver and F. R. Brotzen, J. Mater. Res.7 (1992) 613.

    Google Scholar 

  10. H. Li, A. Ghosh, Y. H. Han and R. C. Bradt, ibid. 8 (1993) 1028.

    Google Scholar 

  11. C. J. Maiden and S. J. Green, J. App. Mech.88 (1966) 496.

    Google Scholar 

  12. W. Mason, P. F. Johnson and J. R. Varner, J. Mater. Res. 7 (1992) 3112.

    Google Scholar 

  13. A. K. Varshneya, in Proceedings of the 4th Brazilian Symposiun on Glasses and Related Materials, Ouro Preto, Brazil, November 1999, J. Non-Cryst. Sol. 273 (2000)1.

    Google Scholar 

  14. A. Bolshakov and G. M. Pharr, J. Mater. Res.13 (1998) 1049.

    Google Scholar 

  15. Idem., Mat. Res. Soc. Symp. Proc. 436 (1997) 189.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Varshneya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strange, D.J., Varshneya, A.K. Finite element simulation of microindentation on aluminum. Journal of Materials Science 36, 1943–1949 (2001). https://doi.org/10.1023/A:1017550008584

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017550008584

Keywords

Navigation