Skip to main content
Log in

Effect of Voltage Bias on the dc SQUID Characteristics

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The dynamics of the dc SQUID, when voltage biased through an inductor, is computed by numerical simulation and by perturbative analytical calculation. We find that the dynamic resistance decreases from its current-biased value at low bias voltages, where the inductive series reactance no longer separates the Josephson voltage oscillation from the bias source. The flux-to-current conversion ratio, however, remains almost unaffected. This effect is sometimes important in setups, where a second SQUID is used as a readout amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Welty and J. Martinis, Two-stage integrated SQUID amplifier with series array output, IEEE Tran. Appl. Supercond. 3 (1 pt. 4), 2605 (1993).

    Google Scholar 

  2. H. Seppä, Dc-SQUID electronics based on adaptive noise cancellation and a high open-loop gain controller, in Superconducting Devices and Their Applications, H. Koch and H. Lübbig (eds.), Springer Proceedings in Physics, Vol. 64, p. 346, Springer-Verlag, Berlin (1992).

    Google Scholar 

  3. A. Ahonen, M. Hämäläinen, M. Kajola, J. Knuutila, P. Laine, O. Lounasmaa, L. Parkkonen, J. Simola, and C. Tesche, 122-channel SQUID instrument for investigating the magnetic signals from the human brain, Physica Scripta T49A, 198 (1993).

    Google Scholar 

  4. H. Seppä, M. Kiviranta, V. Virkki, L. Grönberg, J. Salonen, P. Majander, I. Suni, J. Knuutila, J. Simola, and A. Oittinen, Experiments with a un SQUID based integrated magnetometer, in Extended Abstracts of 6th International Superconductive Electronics Conferee (ISEC '97), H. Koch and S. Knappe (eds.), Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany. A preprint available at www.iki.fi/\(\tilde m\)sk/isec97.

  5. K. K. Likharev, Dynamics of Josephson Junctions and Circuits, Gordon and Breach Science Publishers, New York (1986), p. 208 and references therein.

    Google Scholar 

  6. B. Chesca, Analytical theory of DC SQUIDS operating in the presence of thermal fluctuations, J. Low Temp. Phys. 112, 165 (1998).

    Google Scholar 

  7. D. E. McCumber, Effect of ac impedance on dc voltage-current characteristics of superconductor weak-link junctions, J. Appl. Phys. 39, 3113 (1968).

    Google Scholar 

  8. L. G. Aslamazov and A. I. Larkin, Josephson effect in superconducting point contacts, JETP Lett. 9, 87 (1969).

    Google Scholar 

  9. L. G. Aslamazov, A. I. Larkin, and Yu. N. Ovchinnikov, Josephson effect in superconductors separated by a normal metal, Sov. Phys. JETP 28, 171 (1969).

    Google Scholar 

  10. M. Kiviranta and H. Seppä, Noise simulation of the un SQUID, Applied Superconductivity 6, 373 (1998).

    Google Scholar 

  11. V. Polushkin, D. Glowacka, R. Hart, and J. M. Lumley, Cross-correlated dynamic resistance of a direct current superconducting quantum interference device, J. Low Temp. Phys. 118, 105 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiviranta, M., Seppä, H. Effect of Voltage Bias on the dc SQUID Characteristics. Journal of Low Temperature Physics 123, 127–136 (2001). https://doi.org/10.1023/A:1017549632586

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017549632586

Keywords

Navigation