Skip to main content
Log in

Background light adaptation of the retinal neuronal adaptive system

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Dowling JE. Neural and photochemical mechanisms of visual adaptation in the rat.J Gen Physiol1963;46: 1287-1301.

    Google Scholar 

  2. Dodt E, Echte K. Dark and light adaptation in pigmented and white rats as measured by electroretinogram threshold.J Neurophysiol1961;24:427-45.

    Google Scholar 

  3. Green DG. Light adaptation in the rat retina: evidence for two receptor mechanisms. Science1971; 174:598-600.

    Google Scholar 

  4. Neitz J, Jacobs GH.Reexamination of spectral mechanisms in the rat.J Comp Psychol 1986; 100: 21-9.

    Google Scholar 

  5. Dowling JE, Ripps H. The proximal negative response and visual adaptation in the skate retina.J Gen Physiol1977; 57: 57-74.

    Google Scholar 

  6. Green DG, Powers MK. Mechanisms of light adaptation in the rat retina.Vis Res 1982; 22:209-16.

    Google Scholar 

  7. Miller RF, Dowling JE. Intracellular responses of theMüller (glial cell) of the mudpuppy retina: their relationship to b-wave of the electroretinogram.J Neurophysiol1970;33: 323-41.

    Google Scholar 

  8. Wachtmeister L. On the oscillatory potentials of the electroretinogram in light and dark adaptation.Acta Ophthalmol 1972a; 50(Suppl 116):1-30.

    Google Scholar 

  9. Wachtmeister L. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. IV. Effect of adaptation to short flashes of light. Time interval and intensity of conditioning flashes.A Fourier analysis.Acta Ophthalmol1972b; 50: 1-20.

    Google Scholar 

  10. Algvere P, Wachtmeister L.On the oscillatory potentials of the human electroretinogram in light and dark adaptation. II. Effect of adaptation to background light and subsequent recovery in the dark. A Fourier analysis.Acta Ophthalmol1972; 50: 837-62.

  11. Wachtmeister L, Dowling J.The oscillatory potentials of the mudpuppy retina.Invest Ophthalmol Vis Sci1978; 17:1176-88.

    Google Scholar 

  12. Heynen H, Wachtmeister L, van Norren D. Origin of the oscillatory potentials in the primate retina.Vis Res1985; 25: 1365-73.

    Google Scholar 

  13. el Azazi M, Kristensson K, Malm G, Wachtmeister L. Studies on developmental alterations in the electroretinogram in rats after postnatal exposure to lead.Acta Ophthalmol. 1985;63: 574-80.

    Google Scholar 

  14. el Azazi M, Kristensson K, Malm G, Wachtmeister L. The effect of postnatal exposure to lead on the electroretinogram in young rats.Acta Ophthalmol1987;65:334-43.

    Google Scholar 

  15. el Azazi M, Wachtmeister L. The postnatal development of the oscillatory potentials of the electroretinogram. I. Basic characteristics.Acta Ophthalmol1990;68:401-9.

    Google Scholar 

  16. Dawson WW, Trick GL, Litzkow CA. Improved electrode for electroretinography.Invest Ophthal Vis Sci1979; 18:988-91.

    Google Scholar 

  17. Walters HV & Wright WD.The spectral sensitivity of the fovea and extrafovea in the Purkinje range.Proc Royal Soc B1943;131:340-61.

    Google Scholar 

  18. Le Grand Y. Light, colour and vision. In: Chapman & Hall, London 1968; p 120.

    Google Scholar 

  19. Aguilar M, Stiles WS. Saturation of the rod mechanism of the retina at high levels of stimulation.Opt Acta1954;1:51-65.

    Google Scholar 

  20. Rushton WAH. Rhodopsin measurement and dark adaptation in subject deficient in cone vision. J Physiol1961; 156: 193-205.

    Google Scholar 

  21. Van Lith GHM.Simultane Bestimmung der elektroretinographischen und sensorischen Reizschwelle.Vis Res 1966;6:185-97.

    Google Scholar 

  22. Kothe AC, Lovasik JV, Coupland SG. Variability in clinically measured photopic oscillatory potentials.Doc Ophthalmol1989; 71:381-95.

    Google Scholar 

  23. Lachapelle P. Evidence for an intensity-coding oscillatory potential in the human electroretinogram.Vis Res1991;31: 767-74.

    Google Scholar 

  24. el Azazi M, Wachtmeister L. The postnatal development of the oscillatory potentials of the electroretinogram. II. Photopic characteristics. cta Ophthalmol1991a;69: 6-10.

    Google Scholar 

  25. el Azazi M, Wachtmeister L. The postnatal development of the oscillatory potentials of the electroretinogram. III. Scotopic characteristics.Acta Ophthalmol1991b;69:505-10.

    Google Scholar 

  26. el Azazi M, Wachtmeister L. The postnatal development of the oscillatory potentials of the electroretinogram. IV. Mesopic characteristics.Acta Ophthalmol1992; 70:194-200.

    Google Scholar 

  27. Fulton AB, Baker BN. The relation of retinal sensitivity and rhodopsin in the developing rat retina.Invest Ophthalmol Vis Sci1984;25:647-51.

    Google Scholar 

  28. Noell WK, Walker VS, Kang BS, Berman S. Retinal damage by light in rats.Invest Ophthalmol1966; 5: 450-73.

    Google Scholar 

  29. Brunette JR. The human electroretinogram during dark adaptationArch Ophthalmol 1969;82:491-8.

    Google Scholar 

  30. Berson EL, Gouras P, Hoff M. Temporal aspects of the electroretinogram.Arch Ophthalmol1969;81:207-14.

    Google Scholar 

  31. Algvere P, Westbeck S.Human ERG in response to double flashes of light during the course of dark adaptation. A Fourier analysis of the oscillatory potentials.Vis Res1972; 12:195-214.

    Google Scholar 

  32. Wachtmeister L.On the oscillatory potentials of the human electroretinogram in light and dark adaptation. III. Thresholds and relation to stimulus intensity on adaptation to background light.Acta Ophthalmol 1973;51:95-113.

    Google Scholar 

  33. Peachey NS, Alexander KR, Derlacki DJ, Bobak P, Fishman GA. Effects of light adaptation on the response characteristics of human oscillatory potentials.Electroenceph & Clin Neurophysiol1991;78:27-34.

    Google Scholar 

  34. Benoit J, Lachapelle P. Light adaptation of the human photopic oscillatory potentials: influence of the length of the dark adaptation period.Doc Ophthalmol 1995;89: 267-76.

    Google Scholar 

  35. Lachapelle P, Benoit J, Cheema D, Molotchnikoff S. Temporal relationship between the ERG and geniculate unit activity in rabbit: influence of background luminance.Vis Res 1991; 31:2033-7.

    Google Scholar 

  36. Heckenlively JR, Martin DA, Rosenbaum AL. Loss of electroretinographic oscillatory potentials, optic atrophy and dysplasia in congenital stationary blindness.Am J Ophthalmol1983; 96: 526-34.

    Google Scholar 

  37. Lachapelle P, Little J, Polomeno R. The photopic electroretinogram in congenital stationary blindness with myopia.Invest Ophthalmol Vis Sci 1983; 24:442-50.

    Google Scholar 

  38. Lachapelle P. The human suprathreshold photopic oscillatory in the human electroretinogram. Doc Ophthalmol1994;88: 1-25.

    Google Scholar 

  39. Wachtmeister L. Oscillatory Potentials in the Retina: what do they reveal?In: Progress in Retinal and Eye Research1998; 1, no.4: 485-522.Elsevier Sci Ltd,Pergamon Press, NY.

    Google Scholar 

  40. Wachtmeister L. Further studies on the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG). GABA-and Glycine-antagonists.Acta Ophthalmol 1980;58: 712-25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., el Azazi, M., Eklund, A. et al. Background light adaptation of the retinal neuronal adaptive system. Doc Ophthalmol 103, 13–26 (2001). https://doi.org/10.1023/A:1017549415254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017549415254

Navigation