Skip to main content
Log in

Spin-Polarized Transport in F/S Nanojunctions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We study spin-dependent electronic transport across ferromagnet/superconductor ballistic junctions modeled using tight-binding Hamiltonians with s, p and d orbitals and material-specific parameters. The first result of this paper is that, by accurately modeling the band structure of the bulk materials, one can reproduce the measured differential conductance of Cu/Pb nanocontacts1,2. In contrast the differential conductance of CO/Pb contacts can only be reproduced if an enhanced magnetic moment is present at the interface. The second result concerns the reliability of a method proposed in Refs. 1–3 for determining the degree of polarization of a ferromagnet. By fitting the material-specific differential conductance curves to curves calculated using a single-band model we show that this method does not yield reliable values for polarization and spin-dependent transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. K. Upadhyay, A. Palanisami, R. N. Louie and R. A. Buhrman, Phys. Rev. Lett. 81, 3247 (1998)

    Google Scholar 

  2. S. K. Upadhyay, R. N. Louie and R. A. Buhrman, Appl. Phys. Lett. 74, 3881 (1999)

    Google Scholar 

  3. R. J. Soulen et al., Science 282, 85 (1998)

    Google Scholar 

  4. C. Fierz, S.-F. Lee, J. Bass, W. P. Pratt Jr and P. A. Schroeder, J. Phys.: Condens. Matter 2, 9701 (1990)

    Google Scholar 

  5. M. D. Lawrence and N. Giordano, J. Phys.: Condens. Matter 8, L563 (1996)

    Google Scholar 

  6. V. A. Vasko, V. A. Larkin et al., Phys. Rev. Lett. 78, 1134 (1997)

    Google Scholar 

  7. M. Giroud, H. Courtois, K. Hasselbach, D. Mailly and B. Pannetier, Phys. Rev. B 58, R11872 (1998)

    Google Scholar 

  8. V. T. Petrashov, I. A. Sosnin, I. Cox, A. Parsons and C. Troadec, Phys. Rev. Lett. 83, 3281 (1999)

    Google Scholar 

  9. M. D. Lawrence and N. Giordano, J. Phys.: Condens. Matter 11, 1089 (1999)

    Google Scholar 

  10. F. J. Jedema, B. J. van Wees et al., Phys. Rev. B 60 16549 (1999)

    Google Scholar 

  11. O. Bourgeois, P. Gandit, J. Lesueur, R. Mélin, A. Sulpice, X. Grison and J. Chaussy, cond-mat/9901045

  12. J. M. De Teresa et al., Phys. Rev. Lett. 82, 4288 (1999)

    Google Scholar 

  13. I. I. Mazin, Phys. Rev. Lett. 83, 1427 (1999)

    Google Scholar 

  14. B. Nadgorny, R. J. Soulen et al., cond-mat/9905097

  15. K. N. Altmann, D. Y. Petrovykh et al., cond-mat/0005296

  16. R. Meservey and P. M. Tedrow, Phys. Rev. Lett. 26, 129 (1971)

    Google Scholar 

  17. R. Meservey and P. M. Tedrow, Phys. Rev. B 7, 318 (1973)

    Google Scholar 

  18. D. Paraskevopoulos, R. Meservey and P. M. Tedrow, Phys. Rev. B 16, 4907 (1977)

    Google Scholar 

  19. R. Meservey and P. M. Tedrow, Phys. Rep. 238, 173 (1994)

    Google Scholar 

  20. B. J. Jönsson-Åkerman, R. Escudero, C. Leighton, S. Kim, I. K. Shuller, D. A. Robson, Appl. Phys. Lett. 77, 1870 (2000)

    Google Scholar 

  21. D. A. Papaconstantopoulos, Handbook of Band Structure of Elemental Solids (Plenum, New York, 1986)). Also on the web site: http://cstwww.nrl.navy.mil/bind/

    Google Scholar 

  22. OXON (the Oxford O(N) tight binding code) was developed at The Materials Modelling Laboratory of the Department of Material at the University of Oxford.

  23. F. Taddei, Spin-polarized transport in superconducting and ferromagnetic nanostructures, PhD Thesis, August 2000, Lancaster University (UK)

    Google Scholar 

  24. S. Sanvito, C. J. Lambert, J. H. Jefferson and A. M. Bratkovsky, Phys. Rev. B 59 11936 (1999)

    Google Scholar 

  25. Th. Mühge, N. N. Garif'yanov, Yu. V. Goryunov et al., Phys. Rev. Lett. 77 1857 (1996)

    Google Scholar 

  26. Th. Mühge, I. Zoller, K. Westerholt et al., J. Appl. Phys. 81 4755 (1997)

    Google Scholar 

  27. N. N. Garif'yanov, Yu. V. Goryunov, Th. Mühge et al., Eur. Phys. J. B 1 405 (1998)

    Google Scholar 

  28. I. M. L. Billas, A. Châtelain and W. A. de Heer, Science 265 1682 (1994)

    Google Scholar 

  29. I. M. L. Billas, J. A. Becker, A. Châtelain and W. A. de Heer, Phys. Rev. Lett. 71 4067 (1993)

    Google Scholar 

  30. S. E. Apsel, J. W. Emmert, J. Deng and L. A. Bloomfield, Phys. Rev. Lett. 76 1441 (1996)

    Google Scholar 

  31. J. Izquierdo et al., Surface Science 352–354 902 (1996)

    Google Scholar 

  32. A.B. Shick, A.J. Freeman and A.I. Liechtenstein, J. Appl. Phys. 83, 7022 (1998)

    Google Scholar 

  33. Th. Mühge, N. N. Garif'yanov, Yu. V. Goryunov et al., Physica C296 325 (1998)

    Google Scholar 

  34. F. S. Bergeret, K. B. Efetov and A. I. Larkin, Phys. Rev. B 62 11872 (2000)

    Google Scholar 

  35. P. W. Anderson and H. Suhl, Phys. Rev. 116 898 (1959)

    Google Scholar 

  36. G. E. Blonder, M. Tinkham, T. M. Klapwijk, Phys. Rev. B 25 4515 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taddei, F., Sanvito, S. & Lambert, C.J. Spin-Polarized Transport in F/S Nanojunctions. Journal of Low Temperature Physics 124, 305–320 (2001). https://doi.org/10.1023/A:1017546406402

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017546406402

Keywords

Navigation