Skip to main content
Log in

Major ions, nutrients and primary productivity in volcanic neotropical streams draining rainforest and pasture catchments at Los Tuxtlas, Veracruz, Mexico

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Six streams in the Los Tuxtlas region, a volcanic area in southeastern Mexico, were characterized chemically and biologically. Temperature, pH, conductivity, ions (Ca2+, Mg2+, Na+, K+, CaCO 3 and SO2- 4), nutrients (NO 3, NH+ 4, total P and PO−3 4), and chlorophyll a from epilithon were measured every other month from September 1996 to July 1997. The streams studied had a consistent pattern of cation dominance (Na+>Ca2+>Mg2+>K+), and ionic concentrations varied little during the year of study; nutrients, however, showed strong temporal variability. The ion chemistry of the streams was influenced by bedrock weathering according to the Gibbs Model. The streams are chiefly mesotrophic, but their primary production may be limited by nitrogen based on the N:P ratio. Streams differed in chlorophyll a concentrations and their productivity changed temporally. They were among the most mineral-rich tropical streams, and both their ion concentration levels and cationic patterns coincided with other neotropical volcanic streams. Although there was a pattern in which ion concentrations of the streams were negatively related to the proportion of conserved vegetation and positively related to the proportion of pastures and croplands, the relationships were not statistically significant. We concluded that differences in the major ions of the streams studied were caused by the great heterogeneity in geology and soil types, as well as by geothermal activity in the area. Temporal changes in nutrients were related to biological processes in the streams that influenced primary productivity. Moreover, the influence of land use might be hidden by the strong effect of this heterogeneity on the streams studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allan, J. D., 1995. Stream ecology: structure and function of running waters. Chapman & Hall, London, U.K.: 388 pp.

    Google Scholar 

  • Bothwell, M. L., 1989. Phosphorus-limited growth dynamics of lotic periphyton diatom communities: areal biomass and cellular growth rate responses. Can. J. Fish. aquat. Sci. 46: 1293–1301.

    Google Scholar 

  • Carpenter, S. R., S. G. Fisher, N. B. Grimm & J. F. Kitchell, 1992. Global change and freshwater ecosystems. Ann. Rev. Ecol. Syst. 23: 119–140.

    Google Scholar 

  • Chindah, A. C., 1998. The effect of industrial activities on the periphyton community at the upper reaches of New Calabar River, Niger Delta, Nigeria. Wat. Res. 32: 1137–1143.

    Google Scholar 

  • Cressa, C., E. Vazquez, E. Zoppi, J. E. Rincon & C. Torpez, 1993. Aspectos generales de la limnología de Venezuela. Interciencia 18: 237–248.

    Google Scholar 

  • Dirzo, R. & A. Miranda, 1992. El límite boreal de la selva tropical húmeda en el continente Americano: contracción de la vegetación y solución de una controversia. Interciencia 16: 240–247.

    Google Scholar 

  • Eilers, J. M., D. F. Brakke & A. Henriksen, 1992. The inapplicability of the Gibbs model of world water chemistry for dilute lakes. Limnol. Oceanogr. 37: 1335–1337.

    Google Scholar 

  • Elwood, J. W., J. D. Newbold, A. F. Trimble & R. W. Stark, 1981. The limiting role of phosphorus in a woodland stream ecosystem: effects of P enrichment on leaf decomposition and primary producers. Ecology 62: 146–158.

    Google Scholar 

  • FAO, 1997. Revised legend, soil map of the world. FAO/UNESCO. Rome, Italy.

    Google Scholar 

  • Feth, J. H., 1971. Mechanism controlling world water chemistry: evaporation crystallization process. Science 172: 870–871.

    Google Scholar 

  • Furch, K., 1984. Water chemistry of amazon basin: the distribution of chemical elements among waters. In Sioli, H. (ed.), The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. Dr W. Junk Publishers, Dordrecht, Netherlands: 167–199.

    Google Scholar 

  • Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science 170: 1088–1090.

    Google Scholar 

  • Gilluly, J., A. C. Waters & A. O. Woodford, 1953. Principles of Geology. W. H. Freeman Company, San Francisco, California, U.S.A.: 631 pp.

    Google Scholar 

  • Grimm, N. B. & S. G. Fisher, 1986. Nitrogen limitation in a Sonoran desert stream. J. n. am. Benthol. Soc. 5: 2–15.

    Google Scholar 

  • HACH, 1992. HACH DR/2000, Spectrophotometer Handbook. Procedures Manual. HACH Chemical Co., U.S.A.: 562 pp.

    Google Scholar 

  • Harding, J. S. & M. J. Winterbourn, 1995. Effects of contrasting land use on physico-chemical conditions and benthic assemblages of streams in a Canterbury (South Island, New Zealand) river system. New Zeal. J. mar. freshwat. Res. 29: 479–492.

    Google Scholar 

  • Hauer, R. M. & G. L. Lamberti, 1996. Methods in Stream Ecology. Academic Press, Inc. San Diego California, U.S.A.: 674 pp.

    Google Scholar 

  • Hornung, M. & B. Reynolds, 1995. The effects of natural and anthropogenic environmental changes on ecosystem processes at catchment scale. TREE 10: 443–449.

    Google Scholar 

  • Hynes, H. B. N., 1970. The Ecology of Running Waters. Liverpool University Press: 555 pp.

  • Killham, P., 1990. Mechanism controlling the chemical composition of lakes and rivers: data from Africa. Limnol. Oceanogr. 35: 80–83.

    Google Scholar 

  • Large, A. R. G., G. Patou & C. Amoros, 1996. Primary production and primary producers. In Petts, G. E. & C. Amoros (eds), Fluvial Hydrosystems. Chapman & Hall, London, U.K.: 117–136. 76

    Google Scholar 

  • Likens, G. E., F. H. Bormann, N. M. Johnson, D. W. Fisher & R. S. Pierce, 1970. Effects of forest cutting and herbicide treatment on nutrient budgets in the Hubbard Brook watershed-ecosystem. Ecol. Monogr. 40: 23–46.

    Google Scholar 

  • Likens, G. E. & F. H. Bormann, 1974. Linkages between terrestrial and aquatic ecosystems. BioScience 28: 447–456.

    Google Scholar 

  • Lind, O. T., 1985. Handbook of Common Methods in Limnology. Kendall/Hunt Publishing Company, Iowa, U.S.A.: 199 pp.

    Google Scholar 

  • Lodge, D. J., W. H. McDowell & C. P. McSwiney, 1994. The importance of nutrient pulses in tropical forests. TREE 9: 384–387.

    Google Scholar 

  • Lohman, K., J. R. Jones & C. Baysinger-Daniel, 1991. Experimental evidence for nitrogen limitation in a Northern Ozark stream. J. n. am. Benthol. Soc. 10: 14–23.

    Google Scholar 

  • Margalef, R., 1983. Limnología. Ed. Omega: 1010 pp.

  • Martín del Pozo, A. L., 1997. Geología. In Dirzo, R. & R. C. Voght (eds), Historia Natural de Los Tuxtlas. UNAM, México D.F., México: 25–53.

    Google Scholar 

  • Maass, J. M. & F. García-Oliva, 1990. La conservación de los suelos en las zonas tropicales: el caso de México. Ciencia y Desarrollo 15: 21–36.

    Google Scholar 

  • McCune, B. A., 1991. Multivariate Analysis on the PC-ORD System. Oregon State University: 126 pp.

  • McDowell, W. H., 1991. Nutrient and major element chemistry of Caribbean rainforest streams. Verh. int. Ver. Limnol. 24: 1720–1723.

    Google Scholar 

  • McDowell, W. H. & C. E. Asbury, 1994. Export of carbon, nitrogen, and major ions from three tropical montane watersheds. Limnol. Oceanogr. 39: 111–125.

    Google Scholar 

  • McDowell, W. H., A. E. Lugo & A. James, 1995. Export of nutrients and major ions from Caribbean watersheds. J. n. am. Benthol. Soc. 14: 12–20.

    Google Scholar 

  • Meeks, C. J., 1974. Chlorophylls. In Stewart, P. D. W. (ed.), Algal Physiology and Biochemistry. Blackwell Scientific Publications Ltd., Great Britain: 161–174.

    Google Scholar 

  • Mulholland, P. J., J. D. Newbold & J.W. Elwood., 1985. Phosphorus spiraling in a woodland stream: seasonal variations. Ecology 66: 1012–1023.

    Google Scholar 

  • Newbold, J. D., B.W. Sweeney, J. K. Jackson & L. A. Kaplan, 1995. Concentration and export of solutes from six mountain streams in northwestern Costa Rica. J. n. am. Benthol. Soc. 14: 21–37.

    Google Scholar 

  • Pérez, R. F., 1962. Estudio vulcanológico de la región de Los Tuxtlas. UNAM, Mexico: 55 pp.

    Google Scholar 

  • Pringle, C. M., 1991. Geothermally modified waters surface at La Selva Biological Station, Costa Rica: volcanic processes introduce chemical discontinuities into lowland tropical streams. Biotropica 23: 523–529.

    Google Scholar 

  • Pringle, C. M., G. L. Rowe, F. J. Triska, J. F. Fernandez & J. West, 1993. Landscape linkages between geothermal activity and solute composition and ecological response in surface waters draining the Atlantic slope of Costa Rica. Limnol. Oceanogr. 38: 753–774.

    Google Scholar 

  • Reid, G. K. & R. D. Wood, 1976. Ecology of Inland Waters and Estuaries. Van Nostrand Co., New York, U.S.A.: 485 pp.

    Google Scholar 

  • Richards, C. & R. D. Host, 1994. Examining land use influence on stream habitats and macroinvertebrates: a GIS approach. Wat. Res. Bull. 30: 729–738.

    Google Scholar 

  • Salati, E. & P. B. Vose, 1984. Amazon basin: a system in equilibrium. Science 225: 129–137.

    Google Scholar 

  • Shortreed, K. R. S. & J. G. Stockner, 1983. Periphyton biomass and species composition in a coastal rainforest stream in British Columbia: effects of environmental changes caused by logging. Can. J. Fish. aquat. Sci. 40: 1887–1895.

    Google Scholar 

  • Sioli, H., 1975. Tropical ecological systems. In Galley, F. B. & E. Medina (eds), Trends in Terrestrial and Aquatic Research. Collection Ecology Studies 20, Springer-Verlag, New York Inc.: 275–289.

    Google Scholar 

  • Soto, M. & L. Gamma, 1997. Climas. In Dirzo, R. & R. C. Voght (eds), Historia Natural de Los Tuxtlas. UNAM, México, D. F., México: 7–23.

    Google Scholar 

  • Stallard, R. F. & J. M. Edmond, 1983. Geochemistry of the Amazon 2: the influence of the geology and weathering environment on dissolved load. J. Geophys. Res. 88: 9671–9688.

    Google Scholar 

  • Tett, P. K., M. G. Kelly & G. M. Hornberger, 1977. Estimation of chlorophyll ‘a’ and phaeophytin ‘a’ in methanol. Limnol. Oceanogr. 22: 579–580.

    Google Scholar 

  • Toledo, V. M., 1982. Pleistoscene changes of vegetation: Tropical Mexico. In Prance, G. T. (ed.), Biological Diversification in the Tropics. Columbia University Press, New York, U.S.A.: 73 pp.

    Google Scholar 

  • Torres-Orozco, R. E., 1997. Limnología. In Dirzo, R. & R. C. Voght (eds), Historia Natural de Los Tuxtlas. UNAM, México, D. F., México: 33–41.

    Google Scholar 

  • Webb, B. W. & D. E. Walling, 1992. Water quality II. Chemical characteristics. In Calow, P. & G. E. Petts (eds), The Rivers Handbook. Hydrological and Ecological Principles. Blackwell Scientific Publications, Oxford: 73–100.

    Google Scholar 

  • Wetzel, R. G., 1983. Limnology. Saunders, New York, U.S.A.: 767 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos-Escobedo, M.G., Vázquez, G. Major ions, nutrients and primary productivity in volcanic neotropical streams draining rainforest and pasture catchments at Los Tuxtlas, Veracruz, Mexico. Hydrobiologia 445, 67–76 (2001). https://doi.org/10.1023/A:1017542821411

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017542821411

Navigation