Skip to main content
Log in

Littoral microcrustaceans (Cladocera and Copepoda) as indices of recovery of a limed water system

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A 7 year study (1992–1998) of littoral microcrustaceans (Cladocera and Copepoda) in the watercourse of the River Rore, South Norway, illustrates that qualitative data on cladocerans and copepods are well suited to indicate the recovery of lakes following liming. Eight limed, two acid and two circum neutral reference lakes, were sampled twice a year (June/July and September/October). In the limed lakes, species associated with neutral lakes have become more common, whereas apparently acid-tolerant species have become rarer. In Lake Rore and Lake Syndle, the two largest limed lakes which exhibited a gradual increase in pH, the changes in species composition indicated that these lakes were about to recover. Species composition in Lake Røynelandsvatn, which has reacidified after liming, first reflected improved water quality, then reverted to dominance by acid-tolerant species. In the remaining lakes, the species composition reflects a fauna which has recovered compared with the preliming situation. There is strong evidence, however, that temporary fluctuations in pH have a negative influence on the speed of recovery, confirming the importance of keeping pH stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arvola, L., K. Salonen, I. Bergström, A. Heinänen & A. Ojala, A., 1986. Effects of experimental acidification on phyto-, bacterioand zooplankton in enclosures of a highly humic lake. Int. Rev. ges. Hydrobiol. 71: 737–758.

    Google Scholar 

  • Baker, J. P., D. P. Bernard, S. W. Christensen, M. J. Sale, J. Freda, K. Heltcher, D. Marmorek, L. Rowe, P. Scanlon, G. Suter, W. Warren-Hicks & W. Welbourn, 1990. Biological Effects of Changes in Surface Water Acid-Base Chemistry. NAPAP Report 13. In National Acid Precipitation Assessment Program, Acidic Deposition: State of Science and Technology, Volume II, 1990.

  • Brett, M. T., 1989. Zooplankton communities and acification processes (A review). Wat. Air Soil Pollut. 44: 387–414.

    Article  Google Scholar 

  • Carpenter, S. R., T. M. Frost, D. Heisy & T. K. Kratz, 1989. Randomized intervention analysis and the interpretation of wholeecosystem experiments. Ecology 70: 1142–1152.

    Google Scholar 

  • Degerman, E., L. Henrikson, J. Herrmann & P. Nyberg, 1995. The effects of liming on aquatic fauna. In Henrikson, L. & Y. W. Brodin (eds), Liming of Acidified Surface Waters. A Swedish Synthesis. Springer-Verlag, Berlin: 221–282.

    Google Scholar 

  • Drabløs, D. & A. Tollan, 1980. Proceedings from the Internationale Conference on ecological Impact on Acid Precipitation, Sandefjord, Norway: 383 pp.

    Google Scholar 

  • Evans, R. A., 1989. Response of limnetic insect populations of two acidic, fishless lakes to liming and brook trout (Salvelinus fontinalis). Can. J. Fish. aquat. Sci. 46: 342–351.

    Google Scholar 

  • Halvorsen, G., S. E. Sloreid & B. Walseng, 1996. Dokka-deltaet – ferskvannsbiologiske konsekvenser av kraftutbyggingen i Dokkavassdraget. NINA Oppdragsmelding 437: 1–101.

    Google Scholar 

  • Hann, B. J. & M. A. Turner, 2000. Littoral microcrustacea in Lake 302S in the experimental lakes area of Canada: acidification and recovery. Freshwat. Biol. 43: 133–146.

    Google Scholar 

  • Hasselrot, B., B. I. Andersson & H. Hultberg, 1984. Ecosystem shifts and reintroduction of arctic char (Salvelinus salvelinus (L.)) after liming of a strongly acidified lake in Southwestern Sweden. Rep. Inst. Freshwat. Res., Drottningholm 61: 78–92.

    Google Scholar 

  • Havens, K. E., 1991. Littoral zooplankton responses to acid and aluminum stress during short-term laboratory bioassays. Envir. Pollut. 73: 71–84.

    Google Scholar 

  • Havens, K. E. & J. DeCosta, 1987. Freshwater zooplankton community succession during experimental acidification. Arch. Hydrobiol. 111: 37–65.

    Google Scholar 

  • Havens, K. E. & T. Hanazato, 1993. Zooplankton community responses to chemical stressors: A comparison of results from acidification and pesticide contamination research. Envir. Pollut. 82: 277–288.

    Google Scholar 

  • Henrikson, L. & Y. W. Brodin, 1995. Liming of acidified surface waters. A Swedish synthesis. Springer-Verlag, Berlin: 458 pp.

    Google Scholar 

  • Henrikson, L., H. G. Oscarson & J. A. E. Stenson, 1984. Development of the crustacean zooplankton community after lime treatment of the fishless Lake Gårdsjön, Sweden. Rep. Inst. Freshwat. Res., Drottningholm 61: 104–114.

    Google Scholar 

  • Hill, M. O., 1979. DECORANA – A Fortran program for detrended correspondence analysis and reciprocal avaraging. Cornell University, Ithaca, New York: 52 pp.

    Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–58.

    Google Scholar 

  • Huitfeldt-Kaas, H., 1906. Planktonundersøgelser i norske vande. Nationaltrykkeriet, Christiania: 199 pp.

    Google Scholar 

  • Hultberg, H. & I. B. Andersson, 1982. Liming of acidified lakes: induced long-term changes. Wat. Air Soil Pollut. 18: 311–331.

    Google Scholar 

  • Keller, W., L. A. Molot, R.W. Griffiths & N. D. Yan, 1990. Changes in the zoobenthos community of acidified Bowland Lake after whole lake neutralization and lake trout (Salvelinus namaycush) reintroduction. Can. J. Fish. aquat. Sci. 47: 440–445.

    Google Scholar 

  • Keller, W., N. D. Yan, T. Hovell, L. A. Molot & W. D. Taylor, 1992. Changes in zooplankton during the experimental neutralization and early reacidification of Bowland Lake near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 49(Suppl. 1): 52–62.

    Google Scholar 

  • Krause-Dellin, D. & C. Steinberg, 1986. Cladoceran remains as indicators of lake acidification. Hydrobiologia 143: 129–134.

    Google Scholar 

  • Kroglund, F., T. Hesthagen, A. Hindar, G. G. Raddum, M. Staurnes, D. Gausen & S. Sandøy, 1994. Sur nedbør i Norge. Status, utviklingstendenser og tiltak. DN – Utredning 1994-10: 98 pp.

  • Locke, A., 1991. Zooplankton responses to acidification: a review of laboratory bioassays. Wat. Air Soil Pollut. 60: 135–148.

    Google Scholar 

  • Locke, A., W. G. Sprules, W. Keller & J. R. Pitblado 1994. Zooplankton communities and water chemistry of Sudbury area lakes: changes related to pH recovery. Can. J. Fish. aquat. Sci. 51: 151–160.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid and chrysophyte cyst assemblages as quantitative indicators for the the reconstruction of past enviromental condition in the Alps. I. Climate. J. Palaeolimnol. 18: 395–420.

    Google Scholar 

  • Morling, G. & B. Pejler, 1990. Acidification and zooplankton development in some West-Swedish Lakes 1966–1983. Limnologica (Berlin) 20: 307–318.

    Google Scholar 

  • Muniz, I. P., 1991. Freshwater acidification: its effects on species and communities of freshwater microbes, plants and animals. Pros. roy. Soc. Edinburgh 97B: 227–254.

    Google Scholar 

  • Nilssen, J. P., 1984. An ecological jig-saw puzzle: reconstructing aquatic biogeography and pH in acidified regions. Rep. Inst. Freshwat. Res., Drottningholm 61: 138–147.

    Google Scholar 

  • Orendt, C., 1998. Macroinvertebrates and diatoms as indicators of acidification in forest spring brooks in a region pf eastern Germany (Leipzig-Halle-Bitterfield) highly impacted by industrial activities. Arch. Hydrobiol. 143: 435–467.

    Google Scholar 

  • Paterson, M., 1994. Paleolimnological reconstruction of resent changes in assemblages of Cladocera from acidified lakes in the Adirondack Mountains (New York). Freshwat. Biol. 11: 189–200.

    Google Scholar 

  • Potts, W. T. W. & G. Fryer, 1979. The effects of pH and salt content on sodium balance in Daphnia magna and Acantholeberis curvirostris (Crustacea: Cladocera). J. comp. Physiol. 129: 289–294.

    Google Scholar 

  • Raddum, G. G. & A. Fjellheim, 1994. Invertebrate community changes caused by reduced acidification. In Steinberg, C. E. W. & R. F. Wright (eds), Acidification of Freshwater Ecosystems: Implications for the Future. John Wiley and Sons Ltd., Chichester: 345–354.

    Google Scholar 

  • Raddum, G. G., A. Fjellheim & T. Hesthagen, 1988. Monitoring of acidification through the use of aquatic organism. Verh. int. Ver. Limnol. 23: 2291–2297.

    Google Scholar 

  • Rudd, J. W. M., C. A. Kelly, D. W. Schindler & M. A. Turner, 1990. A comparison of the acidification effiencies of nitric and sulfuric acids by two whole-lake addition experiments. Limnol. Oceanogr. 35: 663–679.

    Google Scholar 

  • Schartau, A. K., A. Hobæk, B. Faafeng, G. Halvorsen, J. W. Løvik, T. Nøst, A. L. Solheim & B. Walseng, 1997. Diversity of zooplankton and littoral crustaceans in freshwater – natural gradients, and effects of pollution, encroachments and introductions. NINA temahefte 14, NIVA lnr 3768-97: 58 pp.

  • Schartau, A. K. & B. Walseng, in press. Correlation between crustacean community and enviromental variables in Killarney, Sudbury. Will be presented on “6th International Conference on Acidic Deposition in Japan, December 2000”.

  • Schindler, D. W., 1988. Effects of acid rain on freshwater ecosystems. Science 239: 149–157.

    Google Scholar 

  • Schindler, D. W., T. M. Frost, K. H. Mills, P. S. S. Chang, I. J. Davies, D. L. Findlay, D. F. Malley, J. A. Shearer, M. A. Turner, P. J. Garrison, C. J. Watras, K. E. Webster, J.M. Gunn, P. L. Brezonik & W. A. Swenson, 1991. Comparisons between experimentally and atmospherically acidified lakes during stress and recovery. Pros. r. Soc. Edinburgh 97B: 193–226.

    Google Scholar 

  • Siegfried, C. A. & J. W. Sutherland, 1992. Zooplankton communities of Adirondack lakes: changes in community structure associated with acidification. Freshwat. Biol. 7(2): 97–112.

    Google Scholar 

  • Stenson, J. A. E. & J. E. Svensson, 1994. Manipulation of planktivore fauna and development of crustacean zooplankton after restoration of the acidified Lake Gårdsjön. Arch. Hydrobiol. 131: 1–23.

    Google Scholar 

  • Svensson, J.-E., L. Henrikson, S. Larsson & A. Wilander, 1995. Liming strategies and effects: The lake Gårdsjön case study. In Henrikson, L. & Y.W. Brodin (eds), Liming of Acidified Surface Waters. A Swedish Synthesis. Springer-Verlag, Berlin: 309–523.

    Google Scholar 

  • Ter Braak, C. J. F., 1987. CANOCO – a FORTRAN program for canonical community ordination by (partial) (detrended) (canonical) correspondance analysis, principal components analysis and redundancy analysis (Version 2.1). TNO Institute of Applied Computer Science: 95 pp.

  • Ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agriculture Math. Group, Wageningen: 35 pp.

    Google Scholar 

  • Walseng, B., 1994. Alona spp. in Norway: Distribution and ecology. Verh. int. Ver. Limnol. 25: 2358–2359. 63 pp.

    Google Scholar 

  • Walseng, B., 1998. Occurence of Eucyclops species in acid and limed water. Verh. int. Ver. Limnol. 26: 2007–2012.

    Google Scholar 

  • Walseng, B. & G. Halvorsen, 1996a. Cladocera. In Aagaard, K. & D. Dolmen (eds), A Catalogue of the Known Freshwater Fauna (in Norwegian). Tapir, Trondheim: 95–99.

    Google Scholar 

  • Walseng, B. & G. Halvorsen, 1996b. Copepoda. In Aagaard, K. & D. Dolmen (eds), A Catalogue of the Known Freshwater Fauna (in Norwegian). Tapir, Trondheim: 103–107.

    Google Scholar 

  • Walseng, B., G. G. Raddum & F. Kroglund, 1995. Kalking i Norge. Invertebrater. DN-utredning 1995–6: 63 pp.

  • Weider, L. J., W. Lampert, M. Wessels, J. K. Colbourne & P. Limburgh, 1997. Long-term genetic shifts in a microcrustacean egg bank associated with anthropogenic changes in the Lake Constance ecosystem. Pros. r. Soc. London series B-biological sciences vol. 264, nr. 1388: 1613–1618.

    Google Scholar 

  • Yan, N. D., W. Keller, K. W. Somers, T. W. Pawson & R. E. Girard, 1996. Recovery of crustacean zooplankton communities from acid and metal contamination: comparing manipulated and reference lakes. Can. J. Fish. aquat. Sci. 53: 1301–1327.

    Google Scholar 

  • Økland, R. H., 1990. Vegetation ecology: theory, methods and applications with reference to Fennoscandia. Sommerfeltia (Suppl. 1): 1–233.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walseng, B., Halvorsen, G. & Sloreid, SE. Littoral microcrustaceans (Cladocera and Copepoda) as indices of recovery of a limed water system. Hydrobiologia 450, 159–172 (2001). https://doi.org/10.1023/A:1017540809917

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017540809917

Keywords

Navigation