Journal of Materials Science

, Volume 33, Issue 11, pp 2725–2733 | Cite as

The hot compaction of woven polypropylene tapes

  • P. J. Hine
  • M. Ward
  • J. Teckoe
Article

Abstract

In this paper we describe the hot compaction of woven polypropylene (PP) tapes. It is shown that under suitable conditions of temperature and pressure, successful compaction is achieved by selective melting of the PP tapes. Mechanical measurements, combined with morphological studies, show that good tape to tape bonding, and good interlayer bonding, are achieved using an optimum compaction temperature of around 182 °C, while retaining a significant proportion of the original PP structure. Differential scanning calorimetry studies have shown that the compaction temperatures employed to produce a homogeneous coherent material have a significant annealing affect on the crystalline structure of the original drawn tapes, with a large change in the crystal size and a small increase in overall crystallinity (accompanied by a small increase in sample density). The mechanical properties of the compacted PP sheets show a combination of low density and good stiffness and strength.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. HINE, I. M. WARD, R. H. OLLEY and D. C. BASSETT, J. Mater. Sci. 28 (1993) 316.Google Scholar
  2. 2.
    R. H. OLLEY, D. C. BASSETT, P. J. HINE and I. M. WARD, ibid. 28 (1993) 1107.Google Scholar
  3. 3.
    M. A. KABEEL, R. H. OLLEY, D. C. BASSETT, P. J. HINE and I. M. WARD, ibid. 29 (1994) 4694.Google Scholar
  4. 4.
    R. H. OLLEY, D. C. BASSETT, P. J. HINE and I. M. WARD, J. Mater. Sci. Idem. ibid., 30 (1995) 601.Google Scholar
  5. 5.
    J. RASBURN, P. J. HINE, I. M. WARD, R. H. OLLEY, D. C. BASSETT and M. A. KABEEL, ibid. 30 (1995) 615.Google Scholar
  6. 6.
    R. J. YAN, P. J. HINE, I. M. WARD, R. H. OLLEY and D. C. BASSETT, ibid., 32 (1997) 4821.Google Scholar
  7. 7.
    M. I. ABO EL MAATY, D. C. BASSETT, R. H. OLLEY, P. J. HINE and I. M. WARD, ibid. 31 (1996) 1157.Google Scholar
  8. 8.
    R. H. OLLEY and D. C. BASSETT, Polymer 23 (1982) 1707.Google Scholar
  9. 9.
    R. J. SAMUELS, J. Polym. Sci., Polym. Phys. Ed. 13 (1975) 1417.Google Scholar
  10. 10.
    Y. S. YADAV and P. C. JAIN, Thermochim. Acta 117 (1987) 97.Google Scholar
  11. 11.
    A. K. TARAIYA, A. P. UNWIN and I. M. WARD, J. Polym. Sci., Polym. Phys. Ed. 26 (1988) 817.Google Scholar
  12. 12.
    H. S. BU, S. Z. D. CHENG and B. WUNDERLICH, Macromol. Rapid Commun. 9 (1988) 76.Google Scholar
  13. 13.
    G. FARROW, Polymer 4 (1963) 191.Google Scholar
  14. 14.
    S. G. TURLEY and H. KESKKULA, J. Appl. Polym. Sci. 9 (1965) 2693.Google Scholar
  15. 15.
    K. YAMADA, M. KAMEZAWA and M. TAKAYANAGI, ibid. 26 (1981) 49.Google Scholar
  16. 16.
    A. G. GIBSON, G. R. DAVIES and I. M. WARD, Polymer 19 (1978) 683.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • P. J. Hine
    • 1
  • M. Ward
    • 1
  • J. Teckoe
    • 2
  1. 1.IRC in Polymer Science and TechnologyUniversity of LeedsLeedsUK
  2. 2.J.J. Thomson Physical Laboratory, WhiteknightsUniversity of ReadingReadingUK

Personalised recommendations