Skip to main content
Log in

Age-specific Effects of Novel Mutations in Drosophila Melanogaster II. Fecundity and Male Mating Ability

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Evolutionary theories of senescence assume that mutations with age-specific effects exist, yet until now, there has been little experimental evidence to support this assumption. In this study, we allowed mutations to accumulate in an outbred, wild population of Drosophila melanogaster to test for age-specific differences in both male mating ability and fecundity. We assayed for age-specific effects of mutations after 10, 20, and 30 generations of mutation accumulation. For mating ability, we found the strongest effects of mutations in the first half of the life span after 20 generations, and at nearly all ages by generation 30. These results are qualitatively consistent with results from a companion study in which age-specific mortality was assayed on the same lines of D. melanogaster. By contrast, effects of fecundity were confined to late ages after 20 generations of mutation accumulation, but by generation 30, as with male mating ability, effects of novel mutations were distributed across all age classes. We discuss several possible explanations for the differences that we observe between generations within traits, and among traits, and the relevance for these patterns to models of aging as well as models of mate choice and sexual selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beck C.W. & L.A. Powell, 2000. Evolution of female mate choice based on male age: are older males better mates? Evol. Ecol. Res. 2: 107–118.

    Google Scholar 

  • Blattner, F.R., G. Plunkett, C.A. Bloch, N.T. Perna, V. Burland, M. Riley, J. Collado Vides, J.D. Glasner, C.K. Rode, G.F. Mayhew, J. Gregor, N.W. Davis, H.A. Kirkpatrick, M.A. Goeden, D.J. Rose, B. Mau & Y. Shao, 1997. The complete genome sequence of Escherichia coli K-12. Science 277: 1453–1474.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1990. Optimization models, quantitative genetics, and mutation. Evolution 44: 520–538.

    Article  Google Scholar 

  • Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. Harper and Row Publishers, New York.

    Google Scholar 

  • Drake, J.W., 1991. A constant rate of spontaneous mutation in DNAbased microbes. Proc. Natl. Acad. Sci. USA 88: 7160–7164.

    Article  PubMed  CAS  Google Scholar 

  • Fry, J.D., S.L. Heinsohn & T.F.C. Mackay, 1996. The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50: 2316–2327.

    Article  Google Scholar 

  • Fry, J.D., P.D. Keightley, S.L. Heinsohn & S.V. Nuzhdin, 1999. New estimates of the rates and effects of mildly deleterious mutation in Drosophila melanogaster. P. Natl. Acad. Sci. USA 96: 574–579.

    Article  CAS  Google Scholar 

  • Garcia-Dorado, A., J.L. Monedero & C. Lopez-Fanjul, 1998. The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster. Genetica 103: 255–265.

    Article  Google Scholar 

  • Goffeau, A., B.G. Barrell, H. Bussey, R.W. Davis, B. Dujon, H. Feldmann, F. Galibert, J.D. Hoheisel, C. Jacq, M. Johnston, E.J. Louis, H.W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin & S.G. Oliver, 1996. Life with 6000 genes. Science 274: 546, 563–567.

    Article  Google Scholar 

  • Hamilton, W.D., 1966. The moulding of senescence by natural selection. J. Theor. Biol. 12: 12–45.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T.F. & D.K. Price, 1995. Good genes and old age: Do old mates provide superior genes? J. Evol. Biol. 8: 759–778.

    Article  Google Scholar 

  • Helfand, S.L., K.J. Blake & B. Rogina, 1995. Temporal patterns of gene expression in the antenna of the adult Drosophila melanogaster. Genetics 140: 549–555.

    PubMed  CAS  Google Scholar 

  • Holm, S., 1979. A simple sequential rejective multiple test procedure. Scand. J. Stat. 6: 65–70.

    Google Scholar 

  • Hughes, K.A., 1995a. The evolutionary genetics of male lifehistory characters in Drosophila melanogaster. Evolution 49: 521–537.

    Article  Google Scholar 

  • Hughes, K.A., 1995b. The inbreeding decline and average dominance of genes affecting male life-history characters in Drosophila melanogaster. Genet. Res. 65: 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, K.A. & B. Charlesworth, 1994. A genetic analysis of senescence in Drosophila. Nature 367: 64–66.

    Article  PubMed  CAS  Google Scholar 

  • Iwasa, 6Y., A. Pomiankowski & S. Nee, 1991. The evolution of costly mate preferences II. The ‘handicap’ principle. Evolution 45: 1431–1442.

    Article  Google Scholar 

  • Jacobs, K.L. & D.W. Grogan, 1997. Rates of spontaneous mutation in an archaeon from geothermal environments. J. Bacteriol. 179: 3298–3303.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315–1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993–1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1998. Inference of genome-wide mutation rates and distributions of mutation effects for fitness traits: A simulation study. Genetics 150: 1283–1293.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & A. Caballero, 1997. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94: 3823–3827.

    Article  PubMed  CAS  Google Scholar 

  • Kibota, T.T. & M. Lynch, 1996. Estimate of the genomic mutation rate deleterious to overall fitness in E-coli. Nature 381: 694–696.

    Article  PubMed  CAS  Google Scholar 

  • Kokko, H. & J. Lindström, 1996. Evolution of female preference for old mates. Proc. R. Soc. Lond. B. 263: 1533–1538.

    Google Scholar 

  • Kondrashov, A.S., 1994. Sex and deleterious mutation. Nature 369: 99–100.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Kosuda, K., 1985. The aging effect on male mating activity in Drosophila melanogaster. Behav. Genet. 15: 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R., 1994. Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460–1469.

    Article  Google Scholar 

  • Lansing, A.I., 1947. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2: 228–239.

    Google Scholar 

  • LeClerc, J.E., B.G. Li, W.L. Payne & T.A. Cebula, 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208–1211.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., J. Blanchard, D. Houle, T. Kibota, S. Schultz, L. Vassilieva & J. Willis, 1999. Perspective: Spontaneous deleterious mutation. Evolution 53: 645–663.

    Article  Google Scholar 

  • Lynch, M., R. Burger, D. Butcher & W. Gabriel, 1993. The mutational meltdown in asexual populations. J. Hered. 84: 339–344.

    PubMed  CAS  Google Scholar 

  • Lynch, M., J. Conery & R. Burger, 1995a. Mutation accumulation and the extinction of small populations. Am. Natur. 146: 489–518.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Burger, 1995b. Mutational meltdowns in sexual populations. Evolution 49: 1067–1080.

    Article  Google Scholar 

  • Manly, B.F.J., 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman and Hall, New York.

    Google Scholar 

  • Matic, I., M. Radman, F. Taddei, B. Picard, C. Doit, E. Bingen, E. Denamur & J. Elion, 1997. Highly variable mutation rates in commensal and pathogenic Escherichia coli. Science 277: 1833–1834.

    Article  PubMed  CAS  Google Scholar 

  • Medawar, P.B., 1946. Old age and natural death. Modern Quart. 2: 30–49.

    Google Scholar 

  • Medawar, P.B., 1952. An Unsolved Problem in Biology. H.K. Lewis, London.

    Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1–19.

    CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 335–355.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., E.G. Pasyukova, C.L. Dilda, Z.-B. Zeng & T.F.C. Mackay, 1997. Sex-specific quantitative trait loci affecting longevity in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 94: 9734–9739.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonateinduced mutations controling viability in Drosophila melangoster. II. Homozygous effects of polygenic mtuations. Genetics 87: 529–545.

    PubMed  CAS  Google Scholar 

  • Partridge, L., A. Green & K. Fowler, 1987. Effects of eggproduction and of exposure to males on female survival in Drosophila melanogaster. J. Insect Physiol. 33: 745–749.

    Article  Google Scholar 

  • Pletcher, S.D., D. Houle & J.W. Curtsinger, 1998. Age-specific properties of spontaneous mutations affecting mortality in Drosophila melanogaster. Genetics 148: 287–303.

    PubMed  CAS  Google Scholar 

  • Pomiankowski, A., Y. Iwasa & S. Nee, 1991. The evolution of costly mate preferences. I. Fisher and biased mutation. Evolution 45: 1422–1430.

    Google Scholar 

  • Promislow, D.E.L., M. Tatar, A. Khazaeli & J.W. Curtsinger, 1996. Age-specific patterns of genetic variance in Drosophila melanogaster. I. Mortality. Genetics 143: 839–848.

    PubMed  CAS  Google Scholar 

  • Rogina, B. & S.L. Helfand, 1995. Regulation of gene-expression is linked to life-span in adult Drosophila. Genetics 141: 1043–1048.

    PubMed  CAS  Google Scholar 

  • Rogina, B. & S.L. Helfand, 1996. Timing of expression of a gene in the adult Drosophila is regulated by mechanisms independent of temperature and metabolic rate. Genetics 143: 1643–1651.

    PubMed  CAS  Google Scholar 

  • Rose, M. & B. Charlesworth, 1981a. Genetics of life-history evolution in Drosophila melanogaster. II. Exploratory selection experiments. Genetics 97: 187–196.

    PubMed  CAS  Google Scholar 

  • Rose, M.R. & B. Charlesworth, 1981b. Genetics of life-history evolution in Drosophila melanogaster. I. Sib analysis of adult females. Genetics 97: 173–186.

    PubMed  CAS  Google Scholar 

  • Schultz, S.T., M. Lynch & J.H. Willis, 1999. Spontaneous deleterious mutation in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 96: 11393–11398.

    Article  PubMed  CAS  Google Scholar 

  • Shabalina, S.A., L.Y. Yampolsky & A.S. Kondrashov, 1997. Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc. Natl. Acad. Sci. USA 94: 13034–13039.

    Article  PubMed  CAS  Google Scholar 

  • Shaw, F.H., D.E. Promislow, M. Tatar, K.A. Hughes & C.J. Geyer, 1999. Toward reconciling inferences concerning genetic variation in senescence in Drosophila melanogaster. Genetics 152: 553–566.

    PubMed  CAS  Google Scholar 

  • Tatar, M., D.E.L. Promislow, A. Khazaeli & J. Curtsinger, 1996. Age-specific patterns of genetic variance in Drosophila melanogaster: II. Fecundity and its genetic correlation with age-specific mortality. Genetics 143: 849–858.

    PubMed  CAS  Google Scholar 

  • Tatar, M., S. Chien & N.K. Priest. In press. Negligible senescence during reproductive diapause in Drosophila melanogaster. Am. Natur.

  • Vassilieva, L.L. & M. Lynch, 1999. The rate of spontaneous mutation for life-history traits in Caenorhabditis elegans. Genetics 151: 119–129.

    PubMed  CAS  Google Scholar 

  • Vaupel, J.W. & A.I. Yashin, 1985. Heterogeneity's ruses: Some surprising effects of selection on population dynamics. Am. Statist. 39: 176–195.

    Article  CAS  Google Scholar 

  • Williams, K.D. & M.B. Sokolowski, 1993. Diapause in Drosophila melanogaster females: a genetic analysis. Heredity 71: 312–317.

    PubMed  Google Scholar 

  • Willis, J.H., 1999. Inbreeding load, average dominance and the mutation rate for mildly deleterious alleles in Mimulus guttatus. Genetics 153: 1885–1898.

    PubMed  CAS  Google Scholar 

  • Yampolsky, L.Y., L. Pearse & D.E.L. Promislow, 2001. Age-specific effects of novel mutations in Drosophila: I. Mortality rates. Genetica 110: 11–29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mack, P.D., Lester, V.K. & Promislow, D.E.L. Age-specific Effects of Novel Mutations in Drosophila Melanogaster II. Fecundity and Male Mating Ability. Genetica 110, 31–41 (2000). https://doi.org/10.1023/A:1017538505627

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017538505627

Navigation