Skip to main content
Log in

Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques Part I Elastic properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three dimensional finite element models of nacre were constructed based on reported microstructural studies on the 'brick and mortar' micro-architecture of nacre. 3D eight noded isoparametric brick elements were used to design the microarchitecture of nacre. Tensile tests were simulated using this model. The tests were conducted at low stresses of 2 MPa which occur well within the elastic regime of nacre and thus effects related to locus and extent of damage were ignored. Our simulations show that using the reported values of elastic moduli of organic (0.005 GPa) and aragonitic platelets (205 GPa), the displacements observed in nacre are extremely large and correspond to a very low modulus of 0.011 GPa. The reported elastic modulus of nacre is of the order of 50 GPa. The reason for this inconsistency may arise from two possibilities. Firstly, the organic layer due to its multilayered structure is possibly composed of distinct layers of different elastic moduli. The continuously changing elastic modulus within the organic layer may approach modulus of aragonite near the organic-inorganic interface. Simulations using variable elastic moduli for the organic phase suggest that an elastic modulus of 15 GPa is consistent with the observed elastic behavior of nacre. Another explanation for the observed higher elastic modulus may arise from localized platelet-platelet contact. Since the observed modulus of nacre lies within the above two extremes (i.e. 15 GPa and 205 GPa) it is suggested that a combination of the two possibilities, i.e. a higher modulus of the organic phase near the organic-inorganic interface and localized platelet-platelet contact can result in the observed elastic properties of nacre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Currey, in “The Mechanical Properties of Biological Materials,” edited by J. F. V. Vincent and J. D. Currey (Cambridge University Press, London, 1980) p. 75.

    Google Scholar 

  2. M. Sarikaya and I. A. Aksay, in “Structure, Cellular Synthesis, and Assembly of Biopolymers,” edited by S. Case (Springer-Verlag, Berlin, 1995) p. 1.

    Google Scholar 

  3. A. P. Jackson, J. Mater. Sci. Lett. 5 (1986) 975.

    Google Scholar 

  4. A. H. Heuer, D. J. Fink, D. J. Larajai, J. L. Arias, P. D. Calvert, K. Kendall, G. L. Messing, J. Blackwell, P. C. Rieke, D. H. Thompson, A. P. Wheeler, A. Veis and A. I. Kaplan, Science 255 (1992) 1098.

    Google Scholar 

  5. K. Simkiss and K. M. Wilbur, in “Biomineralization: Cell Biology and Mineral Deposition” (Academic Press, New York, 1989) p. 231.

    Google Scholar 

  6. P. Calvert, MRS Bull. 10 (1992) 37.

    Google Scholar 

  7. Idem., Mater. Res. Soc. Symp. Proc. 180 (1990) 619.

    Google Scholar 

  8. M. Yasrebi, G. H. Kim, K. E. Gunnison, D. L. Milius, M. Sarikaya and I. A. Aksay, Mat. Res. Soc. Proc. 180 (1990) 625.

    Google Scholar 

  9. M. Sarikaya, K. E. Gunnison, M. Yasrebi, D. L Milius and I. A. Aksay, Mat. Res. Soc. Proc. 174 (1990) 109.

    Google Scholar 

  10. J. Liu, M. Sarikaya and I. A. Aksay, ibid. 255 (1992) 9.

    Google Scholar 

  11. A. P. Jackson, J. F. V. Vincent and R. M. Turner, Proc. R. Soc. Lond. B234 (1988) 415.

    Google Scholar 

  12. S. Mann, in “Biomineralization: Chemical and Biological Perspectives,” edited by S. Mann, J. Webb and R. J. P. Williams (VCH Verlagsgesselschaft, Weiheim, 1989) p. 35.

    Google Scholar 

  13. R. Z. Wang, H. B. Wen, F. Z. Cui, H. B. Zhang and H. D. Li, J. Mater. Sci. 30 (1995) 2299.

    Google Scholar 

  14. J. F. V. Vincent, “Structural Biomaterial” ( MacMillan Press, London, 1982) p. 171.

    Google Scholar 

  15. M. Sarikaya and I. A. Aksay, “Design and Processing of Materials by Biomimetics” (American Institute of Physics, Washington D.C., 1995) p. 1.

    Google Scholar 

  16. A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansama, G. D. Stucky and D. E. Morse, Nature 381 (1996) 56.

    Google Scholar 

  17. L. Addadi and S. Weiner, Agnew Chem. Int. Ed Engl. 31 (1992) 153.

    Google Scholar 

  18. A. M. Belcher, P. K. Hansama, G. D. Stucky and D. E. Morse, Acta Materialia 46 (1998) 733.

    Google Scholar 

  19. S. Mann, Nature 365 (1993) 499.

    Google Scholar 

  20. S. Mann, D. D. Archibold, J. M. Didymus, T. Douglas, B. Heywood, F. C. Meldrum and N. J Reeves, Science 261 (1993) 1286.

    Google Scholar 

  21. K. S. Katti, M. Qian, D. W. Frech and M. Sarikaya, Microsc. Microanal. 5 (1999) 358.

    Google Scholar 

  22. S. E. Borgersen and R. L. Sakaguchi, ASME Int. Mech. Eng. Conf. 28 (1994) 129.

    Google Scholar 

  23. G. W. Brodland and D. A. Clausi, J. Biomech. Eng. 116 (1994) 146.

    Google Scholar 

  24. K. K. Mendis, R. L. Stalnaker and S. H. Advani, ibid. 117 (1995) 279.

    Google Scholar 

  25. C. S. Desai and J. F. Abel, “Introduction to the Finite Element Method” (Van Nostrand Reinhold, New York, 1972)

    Google Scholar 

  26. B. Shapiro, MS thesis, University ofWashington, Seattle, 1996.

  27. S. Weiner and W. Traub, Phil. Trans. R. Soc. Lond. B 304 (1984) 425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh R. Katti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katti, D.R., Katti, K.S. Modeling microarchitecture and mechanical behavior of nacre using 3D finite element techniques Part I Elastic properties. Journal of Materials Science 36, 1411–1417 (2001). https://doi.org/10.1023/A:1017528209162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017528209162

Keywords

Navigation