Energy and Angular Momentum of Systems in General Relativity

Abstract

Stemming from our energy localization hypothesis that energy in general relativity is localized in the regions of the energy-momentum tensor, we had devised a test with the classic Eddington spinning rod. Consistent with the localization hypothesis, we found that the Tolman energy integral did not change in the course of the motion. This implied that gravitational waves do not carry energy in vacuum, bringing into question the demand for the quantization of gravity. Also if information is conveyed by the waves, the traditional view that information transfer demands energy is challenged. Later, we showed that the “body” angular momentum changed at a rate indicating that the moment of inertia increased to higher order, contrary to traditional expectations. We consider the challenges facing the development of a localized expression for the total angular momentum of the body including the contribution from gravity. We find that Komar's expression does not lead to an adequate formulation of localized angular momentum.

This is a preview of subscription content, log in to check access.

REFERENCES

  1. 1.

    F. I. Cooperstock, Mod. Phys. Lett. A 14, 1531 (1999).

    Google Scholar 

  2. 2.

    F. I. Cooperstock, Ann. Phys. 282, 115 (2000).

    Google Scholar 

  3. 3.

    F. I. Cooperstock, Found. Phys. 22, 1011 (1992); in Topics in Quantum Gravity and Beyond: Papers in Honor of L. Witten, F. Mansouri and J. J. Scanio, eds. (World Scientific, Singapore, 1993), pp. 201–210; in Relativistic Astrophysics and Cosmology, J. Buitrago et al., eds. (World Scientific, Singapore, 1997), pp. 61–72.

    Google Scholar 

  4. 4.

    A. S. Eddington, Proc. Roy. Soc. A 102, 268 (1922); The Mathematical Theory of Relativity (Cambridge Univ. Press., 1965; originally published in 1923), pp. 248–252.

    Google Scholar 

  5. 5.

    R. C. Tolman, Relativity, Thermodynamics and Cosmology (Clarendon, Oxford, 1934).

    Google Scholar 

  6. 6.

    F. I. Cooperstock, Mod. Phys. Lett. A 15, 1107 (2000).

    Google Scholar 

  7. 7.

    L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Pergamon, New York, 1987).

    Google Scholar 

  8. 8.

    N. Rosen and F. I. Cooperstock, Class. Quantum Grav. 9, 2657 (1992).

    Google Scholar 

  9. 9.

    Nevertheless, the interest in the localization problem and the desire to elucidate the essential significance of the pseudotensor continued to attract a number of researchers through the years. The activity has intensified more recently. See, e.g., C. C. Chang, J. M. Nester, and C. M. Chen, Phys. Rev. Lett. 83, 1897 (1999). K. S. Virbhadra, Phys. Rev. D 60, 104041 (1999). J.-M. Aguirregabiria, A. Chamorro, and K. S. Virbhadra, Gen. Rel. Grav. 28, 1393 (1996). R. Penrose, Proc. Roy. Soc. London A 381, 53 (1982). F. I. Cooperstock and R. S. Sarracino, J. Phys. A: Math. Gen. 11, 877 (1978); 14, 181 (1981). C. W. Misner and D. H. Sharp, Phys. Rev. 136, B571 (1964).

    Google Scholar 

  10. 10.

    Latin indices range 0-3, Greek indices range 1-3, G=c=1. A semi-colon denotes covariant differentiation.

  11. 11.

    A. Einstein, Sitzungsber. Preuss. Akad. Wiss. Phys. Math. Kl. 688 (1916), B. 154 (1918).

    Google Scholar 

  12. 12.

    F. I. Cooperstock and D. J. Booth, Nuov. Cim. 62B, 163 (1969).

    Google Scholar 

  13. 13.

    It is easy to demonstrate that to the required order, the result is the same whether we use ℐik or T ik.

  14. 14.

    C. W. Misner, Phys. Rev. 130, 1590 (1963).

    Google Scholar 

  15. 15.

    J. N. Winicour, in General Relativity and Gravitation, A. Held, ed. (Plenum, New York, 1980), pp. 71–96.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cooperstock, F.I. Energy and Angular Momentum of Systems in General Relativity. Foundations of Physics 31, 1067–1082 (2001). https://doi.org/10.1023/A:1017526307292

Download citation

Keywords

  • General Relativity
  • Angular Momentum
  • Demand Energy
  • Gravitational Wave
  • Information Transfer