Skip to main content
Log in

Chironomids as indicators of climate change: a 100‐lake training set from a subarctic region of northern Sweden (Lapland)

  • Published:
Journal of Paleolimnology Aims and scope Submit manuscript

Abstract

Multivariate numerical analyses (DCA, CCA) were used to study the distribution of chironomids from surface sediments of 100 lakes spanning broad eco‐climatic conditions in northern Swedish Lapland. The study sites range from boreal forest to alpine tundra and are located in a region of relatively low human impact. Of the 19 environmental variables measured, ordination by CCA identified mean July air temperature as one of the most significant variables explaining the distribution and the abundance of chironomids. Loss‐on‐ignition (LOI), maximum lake depth and mean January air temperature also accounted for significant variation in chironomid assemblages. A quantitative transfer function was created to estimate mean July air temperature from sedimentary chironomid assemblages using weighted‐averaging partial least squares regression (WA‐PLS). The coefficient of determination was relatively high (r2 = 0.65) with root mean squared error of prediction (RMSEP, based on jack-knifing) of 1.13 °C and maximum bias of 2.1 °C, indicating that chironomids can provide useful quantitative estimates of past changes in mean July air temperature. The paper focuses mainly on the relationship between chironomid composition and July air temperature, but the relationship to LOI and depth are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandersson, H., C. Karlström & S. Larsson–McCann, 1991. Temperaturen och nedercörden I Sverige 1961–1990. SMHI, the Swedish Meteorological and Hydrological Institute, No. 81, 88 pp.

  • Barber, V. A. & B. P. Finney, 2000. Late Quaternary paleoclimatic reconstructions for interior Alaska based on paleolake–level data and hydrologic models. J. Paleolim. 2000: 29–41.

  • Barnekow, L., 1999. Holocene vegetation dynamics and climatic changes in the Torneträsk area, northern Sweden. Lunqua Thesis, Department of Geology, Lund University, 30 pp.

  • Barnekow, L., 2000. Holocene regional and local vegetation history and lake–level changes in the Torneträsk area, northern Sweden. J. Paleolim. 23: 399–420.

    Google Scholar 

  • Battarbee, R. W., 2000. Palaeolimnological approaches to climatic change, with special regard to the biological record. Quat. Sci. Rev. 19: 107–124.

    Google Scholar 

  • Berglund, B. E., L. Barnekow, D. Hammarlund, P. Sandgren & I. F. Snowball, 1996. Holocene forest dynamics and climate changes in the Abisko area, northern Sweden – the Sonesson model of vegetation history reconsidered and confirmed. Ecol. Bull. 45: 15–30.

    Google Scholar 

  • Bigler, C., R. I. Hall & I. Renberg, Accepted. A diatom training set for paleoclimatic inferences from lakes in Northern Sweden. Verh. Internat. Verein. Limnol.

  • Birks, H. H., H. J. B Birks, P. E. Kaland & D. Moe (eds), 1988. The Cultural Landscape, Past, Present and Future. Cambridge University Press, Cambridge, 521 pp.

    Google Scholar 

  • Birks, H. J. B., 1981. The use of pollen analysis in the reconstruction of past climates: a review. In Wigley, T. M., M. J. Ingram & G. Farmer (eds), Climate and History: Studies in Past Climates and Their Impact on Man. Cambridge University Press, Cambridge, 869 pp.

    Google Scholar 

  • Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In: Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical guide 5. Quat. Res. Assoc., Cambridge, 161–254.

    Google Scholar 

  • Birks, H. J. B., 1998. Numerical tools in quantitative palaeolimnology – progress, potentialities, and problems, J. Paleolim. 20: 307–322.

    Google Scholar 

  • Blom, T., A. Korhola & J. Weckström, 1998. Physical and chemical characterisation of small subarctic lakes in Finnish Lapland with special reference to climate change scenarios. In Lemmelä, R. & N. Helenius (eds), Proceedings of the Second International Conference on Climate and Water. Espoo, Finland, 17–20 August 1998, 576–587.

  • Briffa, K. R., T. S. Bartholin, D. Eckstein, P. D. Jones, W. Karlén, F. H. Schweingruber & P. Zetterberg, 1990. A 1,400–year tree–ring record of summer temperatures in Fennoscandia. Nature 346: 434–439.

    Google Scholar 

  • Brooks, S. J. & H. J. B. Birks, 2000. Chironomid–infered late–glacial and early–Holocne mean July air temperature for Kråkenes lake, western Norway. J. Paleolim. 23: 77–89.

    Google Scholar 

  • Brooks, S. J., J. J. Lowe & F. E. Mayle, 1997. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297– 308.

    Google Scholar 

  • Brundin, L., 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgseen. Ein Beitrag zur Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. Report of the Institute of Freshwater Research, Drottningholm 30: 1–914.

    Google Scholar 

  • Clerk, S., R. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.

    Google Scholar 

  • Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill & G. Funkhouse, 1995. The ';segment length' curse in long tree–ring chronology development for paleoclimatic studies. The Holocene 5: 229–237.

    Google Scholar 

  • Danks, H. V., 1971. Life history and biology of Einfeldia synchrona (Diptera: Chironomidae. II. Chironomid biology. Can. Entomol. 103: 1597–1606.

    Google Scholar 

  • Davis, M. B. & D. B. Botkin, 1985. Sensitivity of cool–temperate forests and their fossil pollen record to rapid temperature change. Quat. Res. 23: 327–340.

    Google Scholar 

  • Dean, W. E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.

    Google Scholar 

  • Felzer, B., S. L. Thompson, D. Pollard & J. C. Bergengren, 2000. GCM–simulated hydrology in the Arctic during the past 21,000 years. J. Paleolim. 24: 15–28.

    Google Scholar 

  • Hann, B., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change; a comment on Walker et al. (1991). Can. J. Fish. Aquat. Sci. 49: 1274–1276.

    Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–68.

    Google Scholar 

  • Hoffmann, W., 1986. Chironomid analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons Ltd., 715–727.

  • Holmgren, B. & M. Tjus, 1996. Summer air temperatures and tree line dynamics at Abisko. Ecol. Bull. 45: 159–169.

    Google Scholar 

  • Houghton, J. T., G. J. Jenkins & J. J. Ephrams (eds), 1990. Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK, 123 pp.

    Google Scholar 

  • Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response analysis. J. Veget. Sci. 4: 37–46.

    Google Scholar 

  • Josefsson, M., 1990. The geoecology of subalpine heaths in the Abisko valley, northern Sweden. Doctoral thesis, Department of Physical Geography, University of Uppsala, Uppsala, Sweden. UNGI Report 78, 180 pp.

    Google Scholar 

  • Jonasson, P. M., 1978. Zoobenthos of lakes. Verh. Internat. Verein. Limnol. 20: 13–37.

    Google Scholar 

  • Juggins, S. 1994. Gaussian Logit regression. Unpublished computer program version 1.1. Department of Geography, University of Newcastle, Newcastle–upon–Tyne NE1 7RH, UK.

    Google Scholar 

  • Karlén, W. & J. Kuylenstierna, 1996. On solar forcing of Holocene climate: evidence from Scandinavia. The Holocene 6: 359–365.

    Google Scholar 

  • Kullman, L., 1999. Early Holocene tree growth at a high elevation site in the northernmost Scandes of Sweden (Lapland). A palaeobiogeographical case study based on megafossil evidence. Geografiska Annaler 81: 63–74.

    Google Scholar 

  • Laaksonen, K., 1976. The dependance of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann. Acad. Sci. Fennicae A. III 119.

    Google Scholar 

  • Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64: 257–304.

    Google Scholar 

  • Lindegaard, C., 1997. Diptera Chironomidae, non–biting midges. In Nilsson, A. (ed.), Aquatic Insects of North Europe, vol. 2. Odanata – Diptera. Apollo Books, Stenstrup, Denmark, 440 pp.

    Google Scholar 

  • Lindegaard, C. & K. P. Brodersen, 1995. Distribution of Chironomidae (Diptera) in the river continuum. In Cranston, P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO Publications, Melbourne, 257–271.

    Google Scholar 

  • Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with paleolimnological implications. J. Paleolim. 19: 181–198.

    Google Scholar 

  • Lotter, A. F., H. J. B., Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I: Climate. J. Paleolim. 18: 395–420.

    Google Scholar 

  • Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.

    Google Scholar 

  • Lotter, A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid paleotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.

    Google Scholar 

  • MacDonald, G. M., B. Felzer, B. P. Finney & S. L. Forman, 2000. Holocene lake sediment records of arctic hydrology. J. Paleolim 24: 1–14.

    Google Scholar 

  • Matthews, J. A., 1997. Dating problems in the investigation of Scandinavian Holocene glacier fluctuations. In Frenzel, B., G. S. Boulton, B. Gläser & U. Huckriede (eds), Glacier Fluctuations During the Holocene. Paläoklimaforschung 24, 141–157.

  • McGarrigle, M. L., 1980. The distribution of chironomid communities and controlling sediment parameters in L. Derravaragh, Ireland. In Murray, D. A. (ed.), Chironomidae: Ecology, Systematics, Cytology, and Physiology. Pergamon Press, Oxford, 275–282.

    Google Scholar 

  • Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.

    Google Scholar 

  • Olander, H., H. J. B. Birks, A. Khorola & T. Blom, 1999. An expanded calibration model for inferring lake water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9: 279–294.

    Google Scholar 

  • Oliver, D. R. & M. E. Roussel, 1983. The insects and arachnids of Canada, part II. The genera of larval midges of Canada. Agriculture Canada, Publication 1746, 263 pp.

  • Pinder, L. C. V., 1986. Biology of freshwater Chironomideae. Ann. Rev. Entomol. 31: 1–23.

    Google Scholar 

  • Renberg, I., 1991. The HON–Kajak sediment corer. J. Paleolim. 6: 167–170.

    Google Scholar 

  • Renberg, I., M. W. Persson & O. Emteryd, 1994. Pre–industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368: 323–326.

    Google Scholar 

  • Rosén, P., R. Hall, T. Korsman & I. Renberg, 2000. Diatom transfer–functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J. Paleolim. 24: 109–123.

    Google Scholar 

  • Rossaro, B., 1991. Chironomids and water temperature. Aquatic Insects 13: 87–98.

    Google Scholar 

  • Rück, A., I. R. Walker & R. Hebda, 1998. A paleolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.

    Google Scholar 

  • Saether, O. A. 1975. Two new species of Protanypus Kieffer, with keys to Nearctic and Palearctic species of the genus. J. Fish. Res. Bd. Can. 32: 367–388.

    Google Scholar 

  • Simola, H., J. J. Merilainen, O. Sandman, V. Martilda, H. Karjalainen, M. Kukkonen, R. Julken–Tiito & J. Hakulinen, 1996. Paleolimnological analyses as information source for large lake biomonitoring. Hydrobiologia 322: 283–292.

    Google Scholar 

  • Smol, J. P., I. R Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. Internat. Verein. Limnol. 24: 1240–1246.

    Google Scholar 

  • ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.

    Google Scholar 

  • ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA–PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.

    Google Scholar 

  • ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.

    Google Scholar 

  • ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.

    Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. Canoco reference manual and User's guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, USA, 352 pp.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1987. Chironomids, lake trophic status, and climate. Quat. Res. 28: 431–437.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1989a. Much ado about Diptera. J. Paleolim. 2: 1–14.

    Google Scholar 

  • Walker, I. R. & R. W. Mathewes, 1989b. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.

    Google Scholar 

  • Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climate change. Can. J. Fish. Aquat. Sci. 48: 975–987.

    Google Scholar 

  • Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface–water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.

    Google Scholar 

  • Warner, B. G. & J. Hann, 1987. Aquatic invertebrates as paleoclimatic indicators? Quat. Res. 28: 427–430.

    Google Scholar 

  • Warwick, W. F., 1989. Chironomids, lake development and climate: a commentary. J. Paleolim. 2: 15–17.

    Google Scholar 

  • Wiederholm, Y., 1983. Chironomidae of the Holarctic region. Part 1, Larvae. Entomologica Scandinavica, Suppl. 19, 457 pp.

  • Winnell, M. H. & D. S. White, 1985. Trophic status of southeastern Lake Michigan based on the Chironomidae (Diptera). J. Great Lakes Res. 11: 540–548.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Larocque, I., Hall, R. & Grahn, E. Chironomids as indicators of climate change: a 100‐lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26, 307–322 (2001). https://doi.org/10.1023/A:1017524101783

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017524101783

Navigation