Journal of Paleolimnology

, Volume 26, Issue 3, pp 307–322 | Cite as

Chironomids as indicators of climate change: a 100‐lake training set from a subarctic region of northern Sweden (Lapland)

  • I. Larocque
  • R.I. Hall
  • E. Grahn

Abstract

Multivariate numerical analyses (DCA, CCA) were used to study the distribution of chironomids from surface sediments of 100 lakes spanning broad eco‐climatic conditions in northern Swedish Lapland. The study sites range from boreal forest to alpine tundra and are located in a region of relatively low human impact. Of the 19 environmental variables measured, ordination by CCA identified mean July air temperature as one of the most significant variables explaining the distribution and the abundance of chironomids. Loss‐on‐ignition (LOI), maximum lake depth and mean January air temperature also accounted for significant variation in chironomid assemblages. A quantitative transfer function was created to estimate mean July air temperature from sedimentary chironomid assemblages using weighted‐averaging partial least squares regression (WA‐PLS). The coefficient of determination was relatively high (r2 = 0.65) with root mean squared error of prediction (RMSEP, based on jack-knifing) of 1.13 °C and maximum bias of 2.1 °C, indicating that chironomids can provide useful quantitative estimates of past changes in mean July air temperature. The paper focuses mainly on the relationship between chironomid composition and July air temperature, but the relationship to LOI and depth are also discussed.

chironomids climate change temperature transfer function ordination canonical correspondence analysis Sweden Lapland Abisko 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexandersson, H., C. Karlström & S. Larsson–McCann, 1991. Temperaturen och nedercörden I Sverige 1961–1990. SMHI, the Swedish Meteorological and Hydrological Institute, No. 81, 88 pp.Google Scholar
  2. Barber, V. A. & B. P. Finney, 2000. Late Quaternary paleoclimatic reconstructions for interior Alaska based on paleolake–level data and hydrologic models. J. Paleolim. 2000: 29–41.Google Scholar
  3. Barnekow, L., 1999. Holocene vegetation dynamics and climatic changes in the Torneträsk area, northern Sweden. Lunqua Thesis, Department of Geology, Lund University, 30 pp.Google Scholar
  4. Barnekow, L., 2000. Holocene regional and local vegetation history and lake–level changes in the Torneträsk area, northern Sweden. J. Paleolim. 23: 399–420.Google Scholar
  5. Battarbee, R. W., 2000. Palaeolimnological approaches to climatic change, with special regard to the biological record. Quat. Sci. Rev. 19: 107–124.Google Scholar
  6. Berglund, B. E., L. Barnekow, D. Hammarlund, P. Sandgren & I. F. Snowball, 1996. Holocene forest dynamics and climate changes in the Abisko area, northern Sweden – the Sonesson model of vegetation history reconsidered and confirmed. Ecol. Bull. 45: 15–30.Google Scholar
  7. Bigler, C., R. I. Hall & I. Renberg, Accepted. A diatom training set for paleoclimatic inferences from lakes in Northern Sweden. Verh. Internat. Verein. Limnol.Google Scholar
  8. Birks, H. H., H. J. B Birks, P. E. Kaland & D. Moe (eds), 1988. The Cultural Landscape, Past, Present and Future. Cambridge University Press, Cambridge, 521 pp.Google Scholar
  9. Birks, H. J. B., 1981. The use of pollen analysis in the reconstruction of past climates: a review. In Wigley, T. M., M. J. Ingram & G. Farmer (eds), Climate and History: Studies in Past Climates and Their Impact on Man. Cambridge University Press, Cambridge, 869 pp.Google Scholar
  10. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In: Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical guide 5. Quat. Res. Assoc., Cambridge, 161–254.Google Scholar
  11. Birks, H. J. B., 1998. Numerical tools in quantitative palaeolimnology – progress, potentialities, and problems, J. Paleolim. 20: 307–322.Google Scholar
  12. Blom, T., A. Korhola & J. Weckström, 1998. Physical and chemical characterisation of small subarctic lakes in Finnish Lapland with special reference to climate change scenarios. In Lemmelä, R. & N. Helenius (eds), Proceedings of the Second International Conference on Climate and Water. Espoo, Finland, 17–20 August 1998, 576–587.Google Scholar
  13. Briffa, K. R., T. S. Bartholin, D. Eckstein, P. D. Jones, W. Karlén, F. H. Schweingruber & P. Zetterberg, 1990. A 1,400–year tree–ring record of summer temperatures in Fennoscandia. Nature 346: 434–439.Google Scholar
  14. Brooks, S. J. & H. J. B. Birks, 2000. Chironomid–infered late–glacial and early–Holocne mean July air temperature for Kråkenes lake, western Norway. J. Paleolim. 23: 77–89.Google Scholar
  15. Brooks, S. J., J. J. Lowe & F. E. Mayle, 1997. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297– 308.Google Scholar
  16. Brundin, L., 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgseen. Ein Beitrag zur Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. Report of the Institute of Freshwater Research, Drottningholm 30: 1–914.Google Scholar
  17. Clerk, S., R. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.Google Scholar
  18. Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill & G. Funkhouse, 1995. The ';segment length' curse in long tree–ring chronology development for paleoclimatic studies. The Holocene 5: 229–237.Google Scholar
  19. Danks, H. V., 1971. Life history and biology of Einfeldia synchrona (Diptera: Chironomidae. II. Chironomid biology. Can. Entomol. 103: 1597–1606.Google Scholar
  20. Davis, M. B. & D. B. Botkin, 1985. Sensitivity of cool–temperate forests and their fossil pollen record to rapid temperature change. Quat. Res. 23: 327–340.Google Scholar
  21. Dean, W. E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.Google Scholar
  22. Felzer, B., S. L. Thompson, D. Pollard & J. C. Bergengren, 2000. GCM–simulated hydrology in the Arctic during the past 21,000 years. J. Paleolim. 24: 15–28.Google Scholar
  23. Hann, B., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change; a comment on Walker et al. (1991). Can. J. Fish. Aquat. Sci. 49: 1274–1276.Google Scholar
  24. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–68.Google Scholar
  25. Hoffmann, W., 1986. Chironomid analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons Ltd., 715–727.Google Scholar
  26. Holmgren, B. & M. Tjus, 1996. Summer air temperatures and tree line dynamics at Abisko. Ecol. Bull. 45: 159–169.Google Scholar
  27. Houghton, J. T., G. J. Jenkins & J. J. Ephrams (eds), 1990. Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK, 123 pp.Google Scholar
  28. Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response analysis. J. Veget. Sci. 4: 37–46.Google Scholar
  29. Josefsson, M., 1990. The geoecology of subalpine heaths in the Abisko valley, northern Sweden. Doctoral thesis, Department of Physical Geography, University of Uppsala, Uppsala, Sweden. UNGI Report 78, 180 pp.Google Scholar
  30. Jonasson, P. M., 1978. Zoobenthos of lakes. Verh. Internat. Verein. Limnol. 20: 13–37.Google Scholar
  31. Juggins, S. 1994. Gaussian Logit regression. Unpublished computer program version 1.1. Department of Geography, University of Newcastle, Newcastle–upon–Tyne NE1 7RH, UK.Google Scholar
  32. Karlén, W. & J. Kuylenstierna, 1996. On solar forcing of Holocene climate: evidence from Scandinavia. The Holocene 6: 359–365.Google Scholar
  33. Kullman, L., 1999. Early Holocene tree growth at a high elevation site in the northernmost Scandes of Sweden (Lapland). A palaeobiogeographical case study based on megafossil evidence. Geografiska Annaler 81: 63–74.Google Scholar
  34. Laaksonen, K., 1976. The dependance of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann. Acad. Sci. Fennicae A. III 119.Google Scholar
  35. Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64: 257–304.Google Scholar
  36. Lindegaard, C., 1997. Diptera Chironomidae, non–biting midges. In Nilsson, A. (ed.), Aquatic Insects of North Europe, vol. 2. Odanata – Diptera. Apollo Books, Stenstrup, Denmark, 440 pp.Google Scholar
  37. Lindegaard, C. & K. P. Brodersen, 1995. Distribution of Chironomidae (Diptera) in the river continuum. In Cranston, P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO Publications, Melbourne, 257–271.Google Scholar
  38. Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with paleolimnological implications. J. Paleolim. 19: 181–198.Google Scholar
  39. Lotter, A. F., H. J. B., Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I: Climate. J. Paleolim. 18: 395–420.Google Scholar
  40. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.Google Scholar
  41. Lotter, A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid paleotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.Google Scholar
  42. MacDonald, G. M., B. Felzer, B. P. Finney & S. L. Forman, 2000. Holocene lake sediment records of arctic hydrology. J. Paleolim 24: 1–14.Google Scholar
  43. Matthews, J. A., 1997. Dating problems in the investigation of Scandinavian Holocene glacier fluctuations. In Frenzel, B., G. S. Boulton, B. Gläser & U. Huckriede (eds), Glacier Fluctuations During the Holocene. Paläoklimaforschung 24, 141–157.Google Scholar
  44. McGarrigle, M. L., 1980. The distribution of chironomid communities and controlling sediment parameters in L. Derravaragh, Ireland. In Murray, D. A. (ed.), Chironomidae: Ecology, Systematics, Cytology, and Physiology. Pergamon Press, Oxford, 275–282.Google Scholar
  45. Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.Google Scholar
  46. Olander, H., H. J. B. Birks, A. Khorola & T. Blom, 1999. An expanded calibration model for inferring lake water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9: 279–294.Google Scholar
  47. Oliver, D. R. & M. E. Roussel, 1983. The insects and arachnids of Canada, part II. The genera of larval midges of Canada. Agriculture Canada, Publication 1746, 263 pp.Google Scholar
  48. Pinder, L. C. V., 1986. Biology of freshwater Chironomideae. Ann. Rev. Entomol. 31: 1–23.Google Scholar
  49. Renberg, I., 1991. The HON–Kajak sediment corer. J. Paleolim. 6: 167–170.Google Scholar
  50. Renberg, I., M. W. Persson & O. Emteryd, 1994. Pre–industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368: 323–326.Google Scholar
  51. Rosén, P., R. Hall, T. Korsman & I. Renberg, 2000. Diatom transfer–functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J. Paleolim. 24: 109–123.Google Scholar
  52. Rossaro, B., 1991. Chironomids and water temperature. Aquatic Insects 13: 87–98.Google Scholar
  53. Rück, A., I. R. Walker & R. Hebda, 1998. A paleolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.Google Scholar
  54. Saether, O. A. 1975. Two new species of Protanypus Kieffer, with keys to Nearctic and Palearctic species of the genus. J. Fish. Res. Bd. Can. 32: 367–388.Google Scholar
  55. Simola, H., J. J. Merilainen, O. Sandman, V. Martilda, H. Karjalainen, M. Kukkonen, R. Julken–Tiito & J. Hakulinen, 1996. Paleolimnological analyses as information source for large lake biomonitoring. Hydrobiologia 322: 283–292.Google Scholar
  56. Smol, J. P., I. R Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. Internat. Verein. Limnol. 24: 1240–1246.Google Scholar
  57. ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.Google Scholar
  58. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA–PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.Google Scholar
  59. ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.Google Scholar
  60. ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.Google Scholar
  61. ter Braak, C. J. F. & P. Smilauer, 1998. Canoco reference manual and User's guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, USA, 352 pp.Google Scholar
  62. Walker, I. R. & R. W. Mathewes, 1987. Chironomids, lake trophic status, and climate. Quat. Res. 28: 431–437.Google Scholar
  63. Walker, I. R. & R. W. Mathewes, 1989a. Much ado about Diptera. J. Paleolim. 2: 1–14.Google Scholar
  64. Walker, I. R. & R. W. Mathewes, 1989b. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.Google Scholar
  65. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climate change. Can. J. Fish. Aquat. Sci. 48: 975–987.Google Scholar
  66. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface–water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.Google Scholar
  67. Warner, B. G. & J. Hann, 1987. Aquatic invertebrates as paleoclimatic indicators? Quat. Res. 28: 427–430.Google Scholar
  68. Warwick, W. F., 1989. Chironomids, lake development and climate: a commentary. J. Paleolim. 2: 15–17.Google Scholar
  69. Wiederholm, Y., 1983. Chironomidae of the Holarctic region. Part 1, Larvae. Entomologica Scandinavica, Suppl. 19, 457 pp.Google Scholar
  70. Winnell, M. H. & D. S. White, 1985. Trophic status of southeastern Lake Michigan based on the Chironomidae (Diptera). J. Great Lakes Res. 11: 540–548.Google Scholar

Copyright information

© Kluwer Academic Publishers 2001

Authors and Affiliations

  • I. Larocque
    • 1
  • R.I. Hall
    • 2
  • E. Grahn
    • 1
  1. 1.Climate Impacts Research CentreAbiskoSweden
  2. 2.Department of BiologyUniversity of WaterlooWaterlooCanada

Personalised recommendations