Abstract
Multivariate numerical analyses (DCA, CCA) were used to study the distribution of chironomids from surface sediments of 100 lakes spanning broad eco‐climatic conditions in northern Swedish Lapland. The study sites range from boreal forest to alpine tundra and are located in a region of relatively low human impact. Of the 19 environmental variables measured, ordination by CCA identified mean July air temperature as one of the most significant variables explaining the distribution and the abundance of chironomids. Loss‐on‐ignition (LOI), maximum lake depth and mean January air temperature also accounted for significant variation in chironomid assemblages. A quantitative transfer function was created to estimate mean July air temperature from sedimentary chironomid assemblages using weighted‐averaging partial least squares regression (WA‐PLS). The coefficient of determination was relatively high (r2 = 0.65) with root mean squared error of prediction (RMSEP, based on jack-knifing) of 1.13 °C and maximum bias of 2.1 °C, indicating that chironomids can provide useful quantitative estimates of past changes in mean July air temperature. The paper focuses mainly on the relationship between chironomid composition and July air temperature, but the relationship to LOI and depth are also discussed.
Similar content being viewed by others
References
Alexandersson, H., C. Karlström & S. Larsson–McCann, 1991. Temperaturen och nedercörden I Sverige 1961–1990. SMHI, the Swedish Meteorological and Hydrological Institute, No. 81, 88 pp.
Barber, V. A. & B. P. Finney, 2000. Late Quaternary paleoclimatic reconstructions for interior Alaska based on paleolake–level data and hydrologic models. J. Paleolim. 2000: 29–41.
Barnekow, L., 1999. Holocene vegetation dynamics and climatic changes in the Torneträsk area, northern Sweden. Lunqua Thesis, Department of Geology, Lund University, 30 pp.
Barnekow, L., 2000. Holocene regional and local vegetation history and lake–level changes in the Torneträsk area, northern Sweden. J. Paleolim. 23: 399–420.
Battarbee, R. W., 2000. Palaeolimnological approaches to climatic change, with special regard to the biological record. Quat. Sci. Rev. 19: 107–124.
Berglund, B. E., L. Barnekow, D. Hammarlund, P. Sandgren & I. F. Snowball, 1996. Holocene forest dynamics and climate changes in the Abisko area, northern Sweden – the Sonesson model of vegetation history reconsidered and confirmed. Ecol. Bull. 45: 15–30.
Bigler, C., R. I. Hall & I. Renberg, Accepted. A diatom training set for paleoclimatic inferences from lakes in Northern Sweden. Verh. Internat. Verein. Limnol.
Birks, H. H., H. J. B Birks, P. E. Kaland & D. Moe (eds), 1988. The Cultural Landscape, Past, Present and Future. Cambridge University Press, Cambridge, 521 pp.
Birks, H. J. B., 1981. The use of pollen analysis in the reconstruction of past climates: a review. In Wigley, T. M., M. J. Ingram & G. Farmer (eds), Climate and History: Studies in Past Climates and Their Impact on Man. Cambridge University Press, Cambridge, 869 pp.
Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In: Maddy, D. & J. S. Brew (eds), Statistical Modelling of Quaternary Science Data. Technical guide 5. Quat. Res. Assoc., Cambridge, 161–254.
Birks, H. J. B., 1998. Numerical tools in quantitative palaeolimnology – progress, potentialities, and problems, J. Paleolim. 20: 307–322.
Blom, T., A. Korhola & J. Weckström, 1998. Physical and chemical characterisation of small subarctic lakes in Finnish Lapland with special reference to climate change scenarios. In Lemmelä, R. & N. Helenius (eds), Proceedings of the Second International Conference on Climate and Water. Espoo, Finland, 17–20 August 1998, 576–587.
Briffa, K. R., T. S. Bartholin, D. Eckstein, P. D. Jones, W. Karlén, F. H. Schweingruber & P. Zetterberg, 1990. A 1,400–year tree–ring record of summer temperatures in Fennoscandia. Nature 346: 434–439.
Brooks, S. J. & H. J. B. Birks, 2000. Chironomid–infered late–glacial and early–Holocne mean July air temperature for Kråkenes lake, western Norway. J. Paleolim. 23: 77–89.
Brooks, S. J., J. J. Lowe & F. E. Mayle, 1997. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297– 308.
Brundin, L., 1949. Chironomiden und andere Bodentiere der südschwedischen Urgebirgseen. Ein Beitrag zur Kenntnis der bodenfaunistischen Charakterzüge schwedischer oligotropher Seen. Report of the Institute of Freshwater Research, Drottningholm 30: 1–914.
Clerk, S., R. Hall, R. Quinlan & J. P. Smol, 2000. Quantitative inferences of past hypolimnetic anoxia and nutrient levels from a Canadian Precambrian Shield lake. J. Paleolim. 23: 319–336.
Cook, E. R., K. R. Briffa, D. M. Meko, D. A. Graybill & G. Funkhouse, 1995. The ';segment length' curse in long tree–ring chronology development for paleoclimatic studies. The Holocene 5: 229–237.
Danks, H. V., 1971. Life history and biology of Einfeldia synchrona (Diptera: Chironomidae. II. Chironomid biology. Can. Entomol. 103: 1597–1606.
Davis, M. B. & D. B. Botkin, 1985. Sensitivity of cool–temperate forests and their fossil pollen record to rapid temperature change. Quat. Res. 23: 327–340.
Dean, W. E. Jr., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J. Sed. Petrol. 44: 242–248.
Felzer, B., S. L. Thompson, D. Pollard & J. C. Bergengren, 2000. GCM–simulated hydrology in the Arctic during the past 21,000 years. J. Paleolim. 24: 15–28.
Hann, B., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change; a comment on Walker et al. (1991). Can. J. Fish. Aquat. Sci. 49: 1274–1276.
Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Vegetatio 42: 47–68.
Hoffmann, W., 1986. Chironomid analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Wiley and Sons Ltd., 715–727.
Holmgren, B. & M. Tjus, 1996. Summer air temperatures and tree line dynamics at Abisko. Ecol. Bull. 45: 159–169.
Houghton, J. T., G. J. Jenkins & J. J. Ephrams (eds), 1990. Climate Change: The IPCC Scientific Assessment. Cambridge University Press, Cambridge, UK, 123 pp.
Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response analysis. J. Veget. Sci. 4: 37–46.
Josefsson, M., 1990. The geoecology of subalpine heaths in the Abisko valley, northern Sweden. Doctoral thesis, Department of Physical Geography, University of Uppsala, Uppsala, Sweden. UNGI Report 78, 180 pp.
Jonasson, P. M., 1978. Zoobenthos of lakes. Verh. Internat. Verein. Limnol. 20: 13–37.
Juggins, S. 1994. Gaussian Logit regression. Unpublished computer program version 1.1. Department of Geography, University of Newcastle, Newcastle–upon–Tyne NE1 7RH, UK.
Karlén, W. & J. Kuylenstierna, 1996. On solar forcing of Holocene climate: evidence from Scandinavia. The Holocene 6: 359–365.
Kullman, L., 1999. Early Holocene tree growth at a high elevation site in the northernmost Scandes of Sweden (Lapland). A palaeobiogeographical case study based on megafossil evidence. Geografiska Annaler 81: 63–74.
Laaksonen, K., 1976. The dependance of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Ann. Acad. Sci. Fennicae A. III 119.
Lindegaard, C., 1992. Zoobenthos ecology of Thingvallavatn: vertical distribution, abundance, population dynamics and production. Oikos 64: 257–304.
Lindegaard, C., 1997. Diptera Chironomidae, non–biting midges. In Nilsson, A. (ed.), Aquatic Insects of North Europe, vol. 2. Odanata – Diptera. Apollo Books, Stenstrup, Denmark, 440 pp.
Lindegaard, C. & K. P. Brodersen, 1995. Distribution of Chironomidae (Diptera) in the river continuum. In Cranston, P. (ed.), Chironomids: From Genes to Ecosystems. CSIRO Publications, Melbourne, 257–271.
Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with paleolimnological implications. J. Paleolim. 19: 181–198.
Lotter, A. F., H. J. B., Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I: Climate. J. Paleolim. 18: 395–420.
Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1998. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. II. Nutrients. J. Paleolim. 19: 443–463.
Lotter, A. F., I. R. Walker, S. J. Brooks & W. Hofmann, 1999. An intercontinental comparison of chironomid paleotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735.
MacDonald, G. M., B. Felzer, B. P. Finney & S. L. Forman, 2000. Holocene lake sediment records of arctic hydrology. J. Paleolim 24: 1–14.
Matthews, J. A., 1997. Dating problems in the investigation of Scandinavian Holocene glacier fluctuations. In Frenzel, B., G. S. Boulton, B. Gläser & U. Huckriede (eds), Glacier Fluctuations During the Holocene. Paläoklimaforschung 24, 141–157.
McGarrigle, M. L., 1980. The distribution of chironomid communities and controlling sediment parameters in L. Derravaragh, Ireland. In Murray, D. A. (ed.), Chironomidae: Ecology, Systematics, Cytology, and Physiology. Pergamon Press, Oxford, 275–282.
Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59.
Olander, H., H. J. B. Birks, A. Khorola & T. Blom, 1999. An expanded calibration model for inferring lake water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9: 279–294.
Oliver, D. R. & M. E. Roussel, 1983. The insects and arachnids of Canada, part II. The genera of larval midges of Canada. Agriculture Canada, Publication 1746, 263 pp.
Pinder, L. C. V., 1986. Biology of freshwater Chironomideae. Ann. Rev. Entomol. 31: 1–23.
Renberg, I., 1991. The HON–Kajak sediment corer. J. Paleolim. 6: 167–170.
Renberg, I., M. W. Persson & O. Emteryd, 1994. Pre–industrial atmospheric lead contamination detected in Swedish lake sediments. Nature 368: 323–326.
Rosén, P., R. Hall, T. Korsman & I. Renberg, 2000. Diatom transfer–functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. J. Paleolim. 24: 109–123.
Rossaro, B., 1991. Chironomids and water temperature. Aquatic Insects 13: 87–98.
Rück, A., I. R. Walker & R. Hebda, 1998. A paleolimnological study of Tugulnuit Lake, British Columbia, Canada, with special emphasis on river influence as recorded by chironomids in the lake's sediment. J. Paleolim. 19: 63–75.
Saether, O. A. 1975. Two new species of Protanypus Kieffer, with keys to Nearctic and Palearctic species of the genus. J. Fish. Res. Bd. Can. 32: 367–388.
Simola, H., J. J. Merilainen, O. Sandman, V. Martilda, H. Karjalainen, M. Kukkonen, R. Julken–Tiito & J. Hakulinen, 1996. Paleolimnological analyses as information source for large lake biomonitoring. Hydrobiologia 322: 283–292.
Smol, J. P., I. R Walker & P. R. Leavitt, 1991. Paleolimnology and hindcasting climatic trends. Verh. Internat. Verein. Limnol. 24: 1240–1246.
ter Braak, C. J. F., 1990. Update notes: CANOCO version 3.10. Agricultural Mathematics Group, Wageningen.
ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA–PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502.
ter Braak, C. J. F. & I. C. Prentice, 1988. A theory of gradient analysis. Adv. Ecol. Res. 18: 271–317.
ter Braak, C. J. F. & P. F. M. Verdonschot, 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat. Sci. 57: 255–289.
ter Braak, C. J. F. & P. Smilauer, 1998. Canoco reference manual and User's guide to Canoco for Windows: Software for Canonical Community Ordination (version 4). Microcomputer Power, Ithaca, NY, USA, 352 pp.
Walker, I. R. & R. W. Mathewes, 1987. Chironomids, lake trophic status, and climate. Quat. Res. 28: 431–437.
Walker, I. R. & R. W. Mathewes, 1989a. Much ado about Diptera. J. Paleolim. 2: 1–14.
Walker, I. R. & R. W. Mathewes, 1989b. Chironomidae (Diptera) remains in surficial lake sediments from the Canadian Cordillera: analysis of the fauna across an altitudinal gradient. J. Paleolim. 2: 61–80.
Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climate change. Can. J. Fish. Aquat. Sci. 48: 975–987.
Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface–water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178.
Warner, B. G. & J. Hann, 1987. Aquatic invertebrates as paleoclimatic indicators? Quat. Res. 28: 427–430.
Warwick, W. F., 1989. Chironomids, lake development and climate: a commentary. J. Paleolim. 2: 15–17.
Wiederholm, Y., 1983. Chironomidae of the Holarctic region. Part 1, Larvae. Entomologica Scandinavica, Suppl. 19, 457 pp.
Winnell, M. H. & D. S. White, 1985. Trophic status of southeastern Lake Michigan based on the Chironomidae (Diptera). J. Great Lakes Res. 11: 540–548.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Larocque, I., Hall, R. & Grahn, E. Chironomids as indicators of climate change: a 100‐lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26, 307–322 (2001). https://doi.org/10.1023/A:1017524101783
Issue Date:
DOI: https://doi.org/10.1023/A:1017524101783


