Combustion, Explosion and Shock Waves

, Volume 37, Issue 3, pp 292–296 | Cite as

Conditions for Ignition of Iron and Carbon Steel in Oxygen

  • V. I. Bolobov


It is shown that the cylindrical iron and carbon–steel specimens of diameters 1.5 and 3 mm ignite in oxygen at the moment the oxide film loses its protective properties, supposedly, as a result of melting of its main component (FeO) at 1644 K. The ignition temperature does not depend on the oxygen pressure (in the range 0.2—20 MPa). The ignition is preceded by substantial (about 100 K) self–heating of a specimen owing to the heat released upon oxidation of the metal. A carbon–steel foil ignites in oxygen (0.14—0.6 MPa) according to the Semenov—Frank–Kamenetskii mechanism at an initial surface temperature not lower than 1233 K.


Oxidation Oxygen Iron Dynamical System Mechanical Engineer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. E. Derevyaga, L. N. Stesik, and É. A. Fedorin, “Ignition of titanium specimens in oxygen, ” Fiz. Goreniya Vzryva, 12, No. 4, 544-547 (1976).Google Scholar
  2. 2.
    Yu. A. Gal'chenko and Yu. M. Grigor'ev, “Ignition study of the kinetics of the interaction of tantalum with oxygen, ” Fiz. Goreniya Vzryva, 10, No. 2, 245-253 (1974).Google Scholar
  3. 3.
    M. E. Derevyaga, L. N. Stesik, and É. A. Fedorin, “Experimental study of the critical conditions for ignition of magnesium, ” Fiz. Goreniya Vzryva, 14, No. 6, 44-49 (1978).Google Scholar
  4. 4.
    Yu. M. Grigor'ev and A. A. Sarkisyan, “Kinetics and mechanism of the high-temperature interaction of niobium with oxygen, ” Fiz. Goreniya Vzryva, 14, No. 6, 82-88 (1978).Google Scholar
  5. 5.
    M. E. Derevyaga, L. N. Stesik, and É. A. Fedorin, “Ignition and combustion of refractory metals (tungsten, molybdenum, and boron), ” Fiz. Goreniya Vzryva, 15, No. 4, 17-29 (1979).Google Scholar
  6. 6.
    V. I. Bolobov and A. Yu. Berezin, “Conditions for ignition of copper and copper alloys in oxygen, ” Fiz. Goreniya Vzryva, 34, No. 2, 47-50 (1998).Google Scholar
  7. 7.
    V. I. Bolobov, A. Yu. Berezin, P. F. Drozhzhin, and A. S. Shteinberg, “Ignition of compact stainlesssteel specimens in high-pressure oxygen, ” Fiz. Goreniya Vzryva, 27, No. 3, 3-7 (1991).Google Scholar
  8. 8.
    V. I. Bolobov, “Effect of pressure on the ignition temperature of compact samples of nickel alloys in oxygen, ” Fiz. Goreniya Vzryva, 35, No. 2, 54-58 (1999).Google Scholar
  9. 9.
    A. L. Breiter, V. M. Mal'tsev, and E. I. Popov, “Ignition models of metals, ” Fiz. Goreniya Vzryva, 13, No. 4, 558-571 (1977).Google Scholar
  10. 10.
    M. Jacobson, A. R. Cooper, and J. Nagy, “Explosibility of metal powders, ” U.S. Bureau of Mines Report Investigation, No. 6516 (1964).Google Scholar
  11. 11.
    L. Ya. Nesgovorov, “Metallographic study of the combustion of iron in air ow, ” Izv. Akad. Nauk SSSR, Met., No. 1, 141-147 (1965).Google Scholar
  12. 12.
    L. E. Dean and W. R. Thompson, “Ignition characteristics of metals and alloys, ” J. Amer. Rocket Soc., 31, No. 7, 78-85 (1961).Google Scholar
  13. 13.
    A. V. Grosse and I. B. Convay, “Combustion of metals in oxygen, ” Indust. Eng. Chem., 50, No. 4, 663-666 (1958).Google Scholar
  14. 14.
    W. E. Croves, “Safe handling of large quantities of gaseous oxygen in steel pipelines, ” Iron Steel Eng., 42, No. 1, 88-95 (1965).Google Scholar
  15. 15.
    B. A. Ivanov and A. P. Nikonov, “Ignition and combustion of a compact metal in oxygen, ” in: Problems in Engineering Workplace Hygiene (collected papers) [in Russian], No. 63, Metallurgiya, Moscow (1970), pp. 55-63.Google Scholar
  16. 16.
    B. A. Ivanov, Safe Handling of Materials in Contact with Oxygen [in Russian], Khimiya, Moscow (1974).Google Scholar
  17. 17.
    A. T. Sosnovskii and N. I. Stolyarova, Temperature Measurement [in Russian], Izd. Standartov, Moscow (1970).Google Scholar
  18. 18.
    E. Fromm and E. G. Gebhart, Gases and Carbon in Metals [Russian translation], Metallurgiya, Moscow (1980).Google Scholar
  19. 19.
    O. Kubashewski and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1965).Google Scholar
  20. 20.
    J. B_enard (ed.), Oxydation des Metaux, Vol. 1, Gauthier-Villars, Paris (1962).Google Scholar
  21. 21.
    B. I. Khaikin, V. N. Bloshenko, and A. G. Merzhanov, “Ignition of metal particles, ” Fiz. Goreniya Vzryva, 5, No. 4, 474-488 (1970).Google Scholar
  22. 22.
    N. N. Semenov, “The theory of combustion, ” Zh. Ross. Fiz.-Khim. Obshch. Ser. Fiz., 60, 241 (1928).Google Scholar
  23. 23.
    D. A. Frank-Kamenetskii, Di_usion and Heat Transfer in Chemical Kinetics [in Russian], Nauka, Moscow (1987).Google Scholar
  24. 24.
    R. Friedman and A. Macek, “Ignition and combustion of aluminium particles in hot ambient gases, ” Combust. Flame, 6, 9 (1962).Google Scholar
  25. 25.
    Yu. V. Levinskii, Metal Gas Constitution Diagrams [in Russian], Metallurgiya, Moscow (1975).Google Scholar
  26. 26.
    V. I. Bolobov, P. F. Drozhzhin, and V. G. Nechaeva, “High-temperature oxidation and ignition of some metallic materials in uorine, ” Fiz. Goreniya Vzryva, 34, No. 4, 34-42 (1998).Google Scholar

Copyright information

© Plenum Publishing Corporation 2001

Authors and Affiliations

  • V. I. Bolobov
    • 1
  1. 1.Russian Scientific Center “Applied Chemistry,”St. Petersburg

Personalised recommendations