Skip to main content
Log in

Characterization of digestive carbohydrase activity in the gilthead seabream (Sparus aurata)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The presence of digestive carbohydrases was determined in seabream intestines, and the main activity identified was amylase. Optimum activity for this enzyme was found at pH 8.0 at 40 °C. Amylase activity was highly sensitive to extreme pH, and temperatures exceeding 50 °C. The use of SDS–PAGE zymograms allowed identification of amylase in the form of a high molecular mass fraction exceeding 100 kDa. Results confirm the existence of a well developed amylase equipment in this species which supports the possibility of increasing the amount of carbohydrates in the formulation of its commercial feeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alarcón, F. J., M. Díaz, F. J. Moyano & E. Abellán, 1998. Characterization and funtional properties of digestive proteases in two sparids; gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol. Biochem. 19: 257–267.

    Google Scholar 

  • Arias, A., 1980. Growth, alimentary diet and reproduction of the sea bream Sparus aurata and sea bass Dicentrarchus labrax in the fish pond of Cádiz. Invest. Pesq. 44(1): 59–83.

    Google Scholar 

  • Bowen, S. H., 1976. A mechanism for digestion of detrital bacteria by the cichlid fish, Sarotherodon mossambicus (Peters). Nature 260: 137–138.

    Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. An. Biochem. 72: 248–254.

    Google Scholar 

  • Cardenete, G., E. Abellán, M. C. Hidalgo, A. Skalli & A. García-Alcázar, 1997. Utilización digestiva y nutritiva de niveles crecientes de carbohidratos en la dieta por el dentón (Dentex dentex). Resultados preliminares. In: Act. VI Con. Nac. Acuic., Cartagena (Murcia): 458–464.

  • Clark, J., J. E. Mcnaughthon & J. R. Shark, 1984. Metabolism in marine flatfish I. Carbohydrate digestion in Dover sole (Solea solea L.) Comp. Biochem. Physiol. 77(B): 821–827.

    Google Scholar 

  • Chiu, Y. N. & L. V. Benítez, 1981 Studies on the carbohydrases in the digestive tract of the milkfish Chanos chanos. Mar. Biol. 61: 247–254.

    Google Scholar 

  • Eshel, A., P. Lindner, P. Smirnoff, S. Newton & S. Harpaz, 1993. Comparative study of proteolytic enzymes in the digestive tracts of the European sea bass and hybrid striped bass reared in freshwater. Comp. Biochem. Physiol. 106A: 627–634.

    Google Scholar 

  • Establier, R., J. Blasco, M. Gutiérrez, M. C. Sarasquete & E. Bravo, 1985. Enzimas en organismos marinos. III. Actividad α-amilásica en diversos órganos de mugílidos. Inv. Pesq. 49(2): 255–259.

    Google Scholar 

  • Glass, H. J., N. L. Macdonald, R. Munilla-Morán & J. R. Stark, 1989. Digestion of protein in different marine species. Comp. Biochem. Physiol. 94B: 607–611.

    Google Scholar 

  • Haard, N. F., 1992. A review of proteolytic enzymes from marine organisms and their application in the food industry. J. Aquat. Food Product Technol. 1: 17–35.

    Google Scholar 

  • Hagenimana, V., L. P. Véniza & R. E. Simard, 1994. Sweetpotato α-and β-amylases: characterization and kinetic studies with endogenous inhibitors. J. Food Sci. 59(2): 373–377.

    Google Scholar 

  • Hidalgo, M. C., E. Urea & A. Sanz, 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture 170: 267–283.

    Google Scholar 

  • Hofer, R. & C. Sturmbauer, 1985. Inhibition of trout and carp amylase by wheat. Aquaculture 48: 277–283.

    Google Scholar 

  • Kawai, S. & S. Ikeda, 1971. Studies on digestive enzymes of fishes I. Carbohydrases in digestive organs of several fishes. Bull. Jap. Soc. Sci. Fish. 37: 333–337.

    Google Scholar 

  • Kitamikado, M. & S. Tachino, 1960. Studies on the digestive enzymes of rainbow trout proteases. Bull. Japan. Soc. Sci. Fish. 26(7): 685–690.

    Google Scholar 

  • Kuzmina, V. V., 1996. Influence of age on some digestive enzyme activity in some freshwater teleosts. Aquaculture 148(1): 25–37.

    Google Scholar 

  • Lacks, S. A. & S. S. Springhorn, 1980. Renaturation of enzymes after polyacrylamide gel electrophoresis in presence of sodium dodecyl sulfate. J. Biol. Chem. 255(10): 7467–7473.

    Google Scholar 

  • Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Google Scholar 

  • Malacinski, G. M. & W. J. Rutter, 1966. Multiple molecular forms of the amylase from the human saliva. Biochemistry 11: 4382–4390.

    Google Scholar 

  • Munilla-Morán, R. & F. Saborido-Rey, 1996a. Digestive enzymes in marine species. II Amylase activities in gut from seabream (Sparus aurata), turbot, (Scophthalmus maximus) and redfish (Sebastes mentella). Comp. Biochem. Physiol. 113B(4): 827–834.

    Google Scholar 

  • Munilla-Morán, R. & F. Saborido-Rey, 1996b. Digestive enzymes in marine species. I. Proteinase activities in gut from red-fish (Sebastes mentella), seabream (Sparus aurata) and turbot (Scophthalmus maximus) Comp. Biochem. Physiol. 113B(2): 395–402.

    Google Scholar 

  • Nikolsky, G. V., 1963. The Ecology of Fishes. Academic Press London & New York: 352 pp.

    Google Scholar 

  • Robyt, J. F. & W. J. Whelan, 1968. The β-amylases. In Radley, J. A. (ed.), Starch and its Derivatives. Academic Press, London: 477–497.

    Google Scholar 

  • Sander, T. G. & W. J. Rutter, 1972. Molecular properties of rat amylase. Biochemistry 11: 131–136.

    Google Scholar 

  • Stauffer, C., 1989. Enzyme Assays for Food Scientists. Van Nostand Reinhold/AVI, New York.

    Google Scholar 

  • Ugwumba, A. A. A., 1990. Food and feeding of Oreochromis niloticus, Sarotherodon melanotheron and Heterotis niloticus (Pisces: Osteichthyes) in Awba Reservoir, Ibadan. PhD. Thesis, University of Ibadan: 395 pp.

  • Ugwumba, A. A. A., 1993. Carbohydrases in the digestive tract of the African bony-tongue Heterotis niloticus (Pisces: Osteoglossidae). Hydrobiologia 257: 95–100.

    Google Scholar 

  • Ushiyama, H. L., L. Fujimori, T. Shibata & K. Yashimura, 1965. Studies on the carbohydrases in the pyloric caeca of the salmon. Bull. Fac. Fish Hokkaido Univ. 16: 183–188.

    Google Scholar 

  • Wormhoudt, A., G. Bourreau & Le Moullac G., 1995. amylase polymorphism in crustacea Decapoda: Electrophoretic and Immunological studies. Biochem. Syst. Ecol. 23(2): 139–149.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F.J. Moyano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alarcón, F., Martínez, T., Díaz, M. et al. Characterization of digestive carbohydrase activity in the gilthead seabream (Sparus aurata). Hydrobiologia 445, 199–204 (2001). https://doi.org/10.1023/A:1017521900442

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017521900442

Navigation