Skip to main content
Log in

Fracture and deformation behaviour of melt growth composites at very high temperatures

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Unidirectionally solidified Al2O3/Y3Al5O12 (YAG) or Al2O3/Er3Al5O12 (EAG) eutectic composites, which are named as Melt Growth Composites (MGCs) has recently been fabricated by unidirectional solidification. The MGCs have a new microstructure, in which continuous networks of single-crystal Al2O3 phases and single-crystal oxide compounds (YAG or EAG) interpenetrate without grain boundaries. The MGCs fabricated are thermally stable and has the following properties: 1) the flexural strength at room temperature can be maintained up to 2073 K (just below its melting point), 2) a fracture manner from room temperature to 2073 K is an intergranular fracture different from a transgranular fracture of sintered composite with the same composition, 3) the compressive creep strength at 1873 K and a strain rate of 10−4/sec is 7–13 times higher than that of sintered composites, 4) the mechanism of creep deformation is based on the dislocation creep models completely different from the Nabarro-Herring or Coble creep models of the sintered composites, and 5) it shows neither weight gain nor grain growth, even upon heating at 1973 K in an air atmosphere for 1000 hours. The above superior high-temperature characteristics are caused by such factor as the MGCs having a single-crystal Al2O3/single-cryatal oxide compounds without grain boundaries and colonies, and the formation of the thermodynamically stable and compatible interface without amorphous phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. The Japan Industrial Journal 12 (1994) 6.

  2. W.B. Hillig, in “Tailoring Multiphase and Composite Ceramics,” edited by R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham (Plenum Press, New York); Materials Science Research 20 (1986) 697.

    Google Scholar 

  3. E.L. Courtright, H.C. Graham, A.P. Katz and R.J. Kerans, “Ultrahigh temperature assessment studyceramic matrix composites.” (Materials Directorate, Wright Laboratory, Air Force Materiel Command, Wright-Patterson Air Force Base, 1992) p. 1.

    Google Scholar 

  4. D. Viechnicki and F. Schmid, J. Mater. Sci. 4 (1969) 84.

    Google Scholar 

  5. T. Mah and T. A. Parthasarathy, Ceram. Eng. Sci. Proc. 11 (1990) 1617.

    Google Scholar 

  6. T.A. Parthasarathy, T. Mah and L.E. Matson, ibid. 11 (1990) 1628.

    Google Scholar 

  7. T.A. Parthasarathy, M. Tai-I I and L.E. Matson, J. Amer. Ceram. Sci. 76 (1993) 29.

    Google Scholar 

  8. V.S. Stubican, R.C. Bradt, F.L. Kennard, W.J. Minford and C.C. Sorrel, in “Tailoring Multiphase and Composite Ceramics,” edited by R. E. Tressler, G. L. Messing, C.G. Pantano, and R.E. Newnham (Plenum Press, New York); Materials Science Research 20 (1986) 697.

    Google Scholar 

  9. Y. Waku, N. Nakagawa, H. Ohtsubo, Y. Ohsora and Y. Kohtoku, J. Japan Inst. Metals 59 (1995) 71.

    Google Scholar 

  10. Y. Waku, H. Otsubo, N. Nakagawa and Y. Kohtoku, J. Mater. Sci. 31 (1996) 4663.

    Google Scholar 

  11. Y. Waku N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku, ibid. 33 (1998) 1217.

    Google Scholar 

  12. Idem., ibid. 33 (1998) 4943.

    Google Scholar 

  13. N. Nakagawa, Y. Waku, T. Wakamoto, H. Ohtsubo, K. Shimizu and Y. Kohtoku, J. Japan Inst. Metals 64 (2000) 101.

    Google Scholar 

  14. D.R. Clarke, J. Amer. Ceram. Soc. 62 (1979) 236.

    Google Scholar 

  15. J. Echigoya, S. Hayashi, K. Sasaki and H. Suto, J. Japan Inst. Metals 48 (1984) 430.

    Google Scholar 

  16. T.A. Parthasarathy, T. Mah and K. Keller, J. Amer. Ceram. Soc. 75 (1992) 1756.

    Google Scholar 

  17. D.M. Kotchick and R.E. Tressler, ibid. 63 (1980) 429.

    Google Scholar 

  18. F. Wakai, Y. Kodama, S. Sakaguchi, N. Murayama, K. Izeki and K. Niihara, Nature 344 (1990) 421.

    Google Scholar 

  19. W.R. Cannon and T.G. Lagdon, J. Mater. Sci. 18 (1983) 1.

    Google Scholar 

  20. H. Yoshida, K. Shimura, S. Suginohara, Y. Ikuhara and T. Sakuma, N. Nakagawa and Y. Waku, in Proceeding of the 8th International Conference on Creep and Fracture of Engineering Materials and Structures, November 1–5, 1999 Tsukuba (2000) Vol. 171–174, p. 855.

    Google Scholar 

  21. S. Karato, Z. Wang and K. Fujino, J. Mater. Sci. 29 (1994) 6458.

    Google Scholar 

  22. G.S. Corman, J. Mater. Sci. Lett. 12 (1993) 379.

    Google Scholar 

  23. A.E. Paladino and W. D. Kingery, J. Chem. Phys. 37 (1962) 957.

    Google Scholar 

  24. J.D. Frecch, J. Zhao, M.P. Harmer, H.M. Chan and G.A. Miller, J. Amer. Ceram. Soc. 77 (1994) 2857.

    Google Scholar 

  25. H. Hanada, Y. Miyazawa and S. Shirasaki, J. Cryst. Growth 68 (1984) 581.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Waku.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waku, Y., Nakagawa, N., Ohtsubo, H. et al. Fracture and deformation behaviour of melt growth composites at very high temperatures. Journal of Materials Science 36, 1585–1594 (2001). https://doi.org/10.1023/A:1017519113164

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017519113164

Keywords

Navigation