Skip to main content
Log in

The Structure of a Quantized Vortex in a Bose-Einstein Condensate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The structure of a quantized vortex in a Bose-Einstein Condensate is investigated using the projection method developed by Peierls, Yoccoz, and Thouless. This method was invented to describe the collective motion of a many-body system beyond the mean-field approximation. The quantum fluctuation has been properly built into the variational wave function, and a vortex is described by a linear combination of Feynman wave functions weighted by a Gaussian distribution in their center positions. In contrast to the solution of the Gross-Pitaevskii equation, the particle density is finite at the vortex axis and the vorticity is distributed in the core region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell,Science 269, 198 (1995).

    Google Scholar 

  2. C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet,Phys. Rev. Lett. 75, 1687 (1995).

    Google Scholar 

  3. K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. vanDruten, D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Google Scholar 

  4. D.G. Fried, T. C. Killian, L. Willmann, D. Landhuis, S. C. Moss, D. Kleppner, and T. J. Greytak, Phys. Rev. Lett. 81, 3811 (1998).

    Google Scholar 

  5. J. E. Williams and M. J. Holland, Nature(London) 401,568 (1999).

    Google Scholar 

  6. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E.A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

    Google Scholar 

  7. K. W. Madison, F. Chevy, W. Wohlleben,and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Google Scholar 

  8. N. N. Bogoliubov, J. Phys.(USSR)11, 23 (1947).

  9. E. P. Gross, Nuouo Cimento 20, 454 (1961).

    Google Scholar 

  10. L. P. Pitaevskii, Zh. Eksp. Teor. Fzz. 40, 646 (1961) [Sov. Phys. JETP 13, 451 (1961)].

    Google Scholar 

  11. E.Timmermans, P. Tommasini and K. Huang, Phys. Rev. A 55, 3645 (1997).

    Google Scholar 

  12. E. Braaten and A. Nieto, Phys. Rev. B 56, 14745 (1997).

    Google Scholar 

  13. A. L. Fetter, Phys. Rev. Lett. 27, 986(1971); A. L. Fetter, Ann. Phys.(N.Y.) 70, 67 (1972).

    Google Scholar 

  14. D. L. Hill and J. A. Wheeler, Phys.Rev. 89, 1102 (1953).

    Google Scholar 

  15. R. E. Peierls and J. Yoccoz, Proc. Roy. Soc. A 70, 381(1957); R. E. Peierls and D. J. Thouless, Nucl. Phys. 38, 154 (1962).

    Google Scholar 

  16. J.-M. Tang, cond-mat/9812438.

  17. Sir W. Thomson, Phil. Mag. 10, 155 (1880).

    Google Scholar 

  18. R. P. Feynman, in Progress inLow Temperature Physics, edited by C. J. Gorter (Elsevier Science Publishers B.V., Amsterdam, 1955), Vol. 1,Chap. 2, pp. 17–53.

    Google Scholar 

  19. P. S. Julienne, F. H. Mies, E. Tiesinga, and C. J. Williams, Phys. Rev. Lett. 78, 1880 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, JM. The Structure of a Quantized Vortex in a Bose-Einstein Condensate. Journal of Low Temperature Physics 121, 287–292 (2000). https://doi.org/10.1023/A:1017516706057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017516706057

Keywords

Navigation