Skip to main content
Log in

The Covariant Stark Effect

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

This paper examines the Stark effect, as a first order perturbation of manifestly covariant hydrogen-like bound states. These bound states are solutions to a relativistic Schrödinger equation with invariant evolution parameter, and represent mass eigenstates whose eigenvalues correspond to the well-known energy spectrum of the nonrelativistic theory. In analogy to the nonrelativistic case, the off-diagonal perturbation leads to a lifting of the degeneracy in the mass spectrum. In the covariant case, not only do the spectral lines split, but they acquire an imaginary part which is linear in the applied electric field, thus revealing induced bound state decay in first order perturbation theory. This imaginary part results from the coupling of the external field to the non-compact boost generator. In order to recover the conventional first order Stark splitting, we must include a scalar potential term. This term may be understood as a fifth gauge potential, which compensates for dependence of gauge transformations on the invariant evolution parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. P. A. Rejto, Helv. Phys. Acta 44, 708 (1971). P. A. Rejto and S. Sinha, Helv. Phys. Acta 49, 389 (1976).

    Google Scholar 

  2. E. Oks, A. Derevianko, and Ya. Ispolatov, J. Quant. Spectr. Rad. Transfer 54, 307 (1995). H. R. Griem, Contrib. Plasma Phys. 40, 46- 56 (2000). E. Oks, R. D. Bengtson, and J. Touma, Contrib. Plasma Phys. 40, 158- 161 (2000).

    Google Scholar 

  3. W. W. Jones and M. H. Miller, Phys. Rev. A 10, 1131 (1974).

    Google Scholar 

  4. C. Stehle, Astron. Astrophys. Suppl. Ser. 104, 509 (1994). C. Stehle and R. Huucheon, Astron. Astrophys. Suppl. Ser. 140, 93 (1999).

    Google Scholar 

  5. M. D. Bowden, V. P. Gavrilenko, T. Ikutake, J. B. Kim, H. J. Kim, and K. Muraoka, Contrib. Plasma Phys. 40, 113–119 (2000). P. I. Melnikov, J. B. Greenly, and D. A. Hammer, Active Stark Atomic Spectroscopy, http://xxx.tau.ac.il/abs/physics/9807008, private communication.

    Google Scholar 

  6. E. C. G. Stueckelberg, Helv. Phys. Acta 14, 322 (1941); Helv. Phys. Acta 14, 588 (1941).

    Google Scholar 

  7. L. P. Horwitz and C. Piron, Helv. Phys. Acta 48, 316 (1973).

    Google Scholar 

  8. V. A. Fock, Phys. Z. Sowjetunion 12, 404 (1937). R. P. Feynman, Rev. Mod. Phys. 20, 367 (1948); Phys. Rev. 80, 440 (1950). J. Schwinger, Phys. Rev. 82, 664 (1951). Y. Nambu, Prog. Theor. Phys. 5, 82 (1950). R. Fanchi, Phys. Rev. D 20, 3108 (1979). C. Dewdney, P. R. Holland, A. Kyprianides, and J. P. Vigier, Phys. Lett. A 113, 359 (1986). C. Dewdney, P. R. Holland, A. Kyprianides, and J. P. Vigier, Phys. Lett. A 114, 444 (1986). A. Kyprianides, Phys. Rep. 155, 1 (1986).

    Google Scholar 

  9. R. Arshansky and L. P. Horwitz, J. Math. Phys. 30, 66 (1989).

    Google Scholar 

  10. R. Arshansky and L. P. Horwitz, J. Math. Phys. 30, 380 (1989).

    Google Scholar 

  11. M. C. Land, R. Arshansky, and L. P. Horwitz, Found. Phys. 24, 563 (1994).

    Google Scholar 

  12. M. C. Land and L. P. Horwitz, J. Phys. A: Math. and Gen. 28, 3289 (1995).

    Google Scholar 

  13. D. Saad, L. P. Horwitz, and R. I. Arshansky, Found. Phys. 19, 1126 (1989).

    Google Scholar 

  14. R. Arshansky, L. P. Horwitz, and Y. Lavie, Found. Phys. 13, 1167 (1983).

    Google Scholar 

  15. M. C. Land and L. P. Horwitz, Found. Phys. Lett. 4, 61 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Land, M.C., Horwitz, L.P. The Covariant Stark Effect. Foundations of Physics 31, 967–991 (2001). https://doi.org/10.1023/A:1017516119084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017516119084

Keywords

Navigation