Skip to main content
Log in

RFLP mapping of QTLs for photoperiod response in tropical sorghum

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Genetic control of flowering time in sorghum was investigated using a recombinant inbred lines population derived from a cross between IS 2807, a slightly photoperiod sensitive tropical caudatum landrace, and IS 7680,a highly photoperiod sensitive tropical guinea landrace. Progenies were sown with their parents at six different dates between 1995 and 1997 in Burkina Faso. Direct field measures and synthetic measures derived from the implementation of a model were used to characterize the photoperiod response. Emphasis was put to identify the most relevant traits to account for Basic Vegetative Phase (BVP) and photoperiod sensitivity sensus stricto. One QTL was detected on Linkage Group (LG) F for the traits related to BVP. Two QTLs were detected on LGs C and H for the traits related to the photoperiod sensitivity sensus stricto. This gives credit to at least partially independent genetic determinisms for those two components of photoperiod response. Evidences for possible orthology of the QTLs detected here with other QTLs and major genes involved in flowering time of sorghum and rice are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken, Y., 1974. Flowering time, climate and genotype. University Press, Melbourne, 193 pp.

    Google Scholar 

  • Alagarswamy, G. & J.T. Ritchie, 1991. Phasic development in CERES sorghum model. In: T. Hodges (Ed.), Predicting Crop Phenology, pp. 143–152. CRC Press, Boca Raton.

    Google Scholar 

  • Alagarswamy, G., D.M. Reddy & G. Swaminathan, 1998. Duration of the photoperiod-sensitive and insensitive phases of time to panicle initiation in sorghum.Field Crops Res 55: 1–10.

    Article  Google Scholar 

  • Boivin, K., M. Deu, J.F. Rami, G. Trouche & P. Hamon, 1999. Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98: 320–328.

    Article  CAS  Google Scholar 

  • Causse, M.A., T.A. Fulton, Y.G. Cho, S.N. Ahn, J. Chunwongse, K. Wu, J. Xiao, Z. Yu, P.C. Ronald, S.E. Harrington, G. Second, S.R. McCouch & S.D. Tanksley, 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138: 1251–1274.

    PubMed  CAS  Google Scholar 

  • Chantereau, J., M. Vaksmann, I. Bahmani., M. Ag Hamada, M. Chartier & R. Bonhomme, 1998. Characterization of different temperature and photoperiod responses in African sorghum landraces. In: A. Ratnadass, J. Chantereau & J. Gigou (Eds.), Amélioration du Sorgho et de sa Culture en Afrique de l'Ouest et du Centre, pp. 29–36. Cirad, Montpellier.

    Google Scholar 

  • Childs, K.L., F.R. Miller, M.M. Cordonnier-Pratt, L.H. Pratt, P.W. Morgan & J.E. Mullet, 1997. The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B1. Plant Physiol 113: 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, G.A. & R.W. Doerge, 1994. Empirical threshold values for quantitative trait mapping. Genetics 138: 963–971.

    PubMed  CAS  Google Scholar 

  • Craufurd, P.Q., Qi Aiming, R.H. Ellis, R.J. Summerfield, E.H. Roberts & V.A. Mahalakshmi, 1998. Effect of temperature on time to panicle initiation and leaf appearance in Sorghum. Crop Sci 38: 942–947.

    Article  Google Scholar 

  • Curtis, D.L., 1968. The relationship between the date of heading of Nigerian sorghums and the duration of growing season. J Appl Ecol 5: 215–226.

    Article  Google Scholar 

  • Doggett, H., 1988. Sorghum. Longman Scientific & Technical, Harlow, 512 pp.

    Google Scholar 

  • Dufour, P., 1996. Cartographie moléculaire du génome du sorgho (Sorghum bicolor, L. Moench): application en sélection végétale, cartographie comparée chez les Andropogonées. PhD thesis, Université Paris XI, Orsay, 106 pp.

    Google Scholar 

  • Dufour, P., M. Deu, L. Grivet, A. D'Hont, F. Paulet, A. Bouet, C. Lanaud, J.C. Glaszmann & P. Hamon, 1997. Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94: 409–418.

    Article  CAS  Google Scholar 

  • Ellis, R.H., A. Qi, P.Q. Craufurd, R.J. Summerfield & E.H. Roberts, 1997.Effects of photoperiod, temperature and asynchrony between thermoperiod and photoperiod on development to panicle initiation in sorghum. Ann Bot 79: 169–178.

    Article  Google Scholar 

  • Foucher, J.F., 1992. CSAT version 2.0, manuel d'utilisation. Service central informatique du Cirad-Gerdat, Montpellier, 180 pp.

    Google Scholar 

  • Forsythe, W.C., E.J. Rykiel, R.S. Stahl, H.I. Wu & R.M. Schoolfield, 1995. A model comparison for daylength as a function of latitude and day of year. Ecol Model 80: 87–95.

    Article  Google Scholar 

  • Garner, W.W. & Allard H.A., 1923. Further studies in photoperiodism, the response of the plant to relative length of day and night. J Agric Res 23: 871–920.

    Google Scholar 

  • Hammer, G.L., R.L. Vanderlip, G. Gibson, L.J. Wade, R.G. Henzell, D.R Younger, J. Warren & A.B. Dale, 1989. Genotype-byenvironment interaction in grain sorghum. II. Effects of temperatures and photoperiod on ontogeny. Crop Sci 29: 376–384.

    Article  Google Scholar 

  • Huda, A.K.S., 1987. Simulating yields of sorghum and pearl millet in the semi-arid tropics. Field Crops Res 15: 309–325.

    Article  Google Scholar 

  • Kassam, A.H. & D.J. Andrew, 1975. Effects of sowing dates on growth, development and yield of photosensitive sorghum at Samaru, Northern Nigeria. Expl Agric 11: 227–240.

    Article  Google Scholar 

  • Kinoshita, T., 1995. Report of committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl 12: 9–153.

    Google Scholar 

  • Lander, E.S. & D. Botstein, 1989. Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 136: 1447–1455.

    Google Scholar 

  • Laurie, D.A., 1997. Comparative genetics of flowering time. Plant Mol Biol 35: 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y.R., K.F. Schertz & A.H. Paterson, 1995. Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to a interspecific sorghum population. Genetics 141: 391–411.

    PubMed  CAS  Google Scholar 

  • Major, D.J., 1980. Photoperiod response characteristics controlling flowering of nine crop species. Can J Plant Sci 60: 777–784.

    Article  Google Scholar 

  • Major, D.J. & J.R. Kiniry, 1991. Predicting daylength effects on phenological processes. In: T. Hodges (Ed.), Predicting Crop Phenology, pp. 15–28. CRC Press, Boca Raton.

    Google Scholar 

  • Major, D.J., S.B. Rood & F.R. Miller, 1990. Temperature and photoperiod effects mediated by the sorghum maturity genes. Crop Sci 30: 305–310.

    Article  Google Scholar 

  • Muchow, R.C. & P.S. Carberry, 1990. Phenology and leaf area development in a tropical grain sorghum. Field Crops Res 23: 221–237.

    Article  Google Scholar 

  • Ouattara M., M. Vaksmann, F.M. Reyniers, O. Niangado & M. Kouressy, 1997. Diversité phénologique des sorghos du Mali et adaptation à la diversité des agro-systèmes - Mise en valeur d'un savoir. In: Gestion des Ressources Génétiques des Plantes en Afrique des Savanes, Bamako, 24–28 février 1997, pp. 73–84. IER, BRG & Solagral, Bamako, Paris, Montpellier.

    Google Scholar 

  • Paterson, A.H., Y.R. Lin, Z. Li, K.F. Schertz, J.F. Doebley, S.R.M. Pinson, S.C. Liu, J.W. Stansel & J.E. Irvine, 1995. Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269: 1714–1717.

    CAS  PubMed  Google Scholar 

  • Pereira, M.G. & M. Lee, 1995. Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90: 380–388.

    Article  CAS  Google Scholar 

  • Pereira, M.G., M. Lee, P. Bramel Cox, W. Woodman, J. Doebley & R. Whitkus, 1994. Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37: 236–243.

    CAS  PubMed  Google Scholar 

  • Quinby, J.R., 1967. The maturity genes of sorghum. In: A.G. Norman (Ed.), Advance in Agronomy, pp. 267–305. Academic Press, New York.

    Google Scholar 

  • Rami, J.F., P. Dufour, G. Trouche, G. Fliedel, C. Mestres, F. Davrieux, P. Blanchard & P. Hamon, 1998. Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97: 605–616.

    Article  CAS  Google Scholar 

  • Rooney, W.L. & S. Aydin, 1999. Genetic control of a photoperiodsensitive response in Sorghum bicolor (L.) Moench. Crop Sci 39: 397–400.

    Article  Google Scholar 

  • Sarma, R.N., B.S. Gill, T. Sasaki, G. Galiba, J. Sutka, D.A. Laurie & J.W. Snape, 1998. Comparative mapping of the wheat chromosome 5A Vrn-A1 region with rice and its relationship to QTL for flowering time. Theor Appl Genet 97: 103–109.

    Article  CAS  Google Scholar 

  • Sivakumar, M.V.K & F. Gnoumou, 1987. Agroclimatologie de l'Afrique de l'Ouest: le Burkina Faso. Bulletin d'information n° 23, ICRISAT, 192 pp.

  • Tinker, N.A., D.E. Mather, B.G. Rossnagel, K.J. Kasha, A. Kleinhofs, P.M. Hayes, D.E. Falk, T. Fergusson, L.P. Shugar, W.G. Legge, R.B. Irvine, T.M. Choo, K.G. Briggs, S.E. Ullrich, J.D. Franckowiak, T.K. Blake, R.J. Graf, S.M. Dofing, M.A. Saghai Maroof, G.J. Scoles, D. Hoffman, L.S. Dahleen, A. Kilian, F. Chen, R.M. Biyashev, D.A. Kudrna & B.J. Steffenson, 1996. Regions of the genome that affect agronomic performances in two-row barley. Crop Sci 36: 1053–1062.

    Article  Google Scholar 

  • Trouche, G., M. Vaksmann, M. Kouressy, J. Chantereau, C. Barro & J.F. Rami, 1998. Déterminisme génétique mendélien de la sensibilité à la photopériode des sorghos ouest-africains. In: L. Bacci & J. F. Reyniers (Eds.), Le Futur des Céréales Photopériodiques pour une Agriculture Durable en Afrique Tropicale Semi-aride, Florence, 27–30 avril 1998, pp. 225–246. Cirad & Ce.S.I.A. I.A.T.A.-C.N.R, Montpellier, Firenze.

    Google Scholar 

  • Utz, H.F. & A. Melchinger, 1995. A computer program to map QTL. rz-ftp@uni-hohenheim.de or ftp://ftp.uni-hohenheim.de/anonymou/pub/plabqtl/.

  • Vaksmann, M., J. Chantereau, I. Bahmani, M. Ag Hamada, M. Chartier & R. Bonhomme, 1998. Influence of night temperature on photoperiod response of aWest African sorghum landrace. In: A. Ratnadass, J. Chantereau & J. Gigou (Eds.), Amélioration du Sorgho et de sa Culture en Afrique de l'Ouest et du Centre. pp. 23–28. Cirad-ca, Montpellier.

    Google Scholar 

  • Vaksmann, M., S. Traore & O. Niangado, 1996. Le photopériodisme des sorghos africains. Agric Dével 9: 13–18.

    Google Scholar 

  • Yano, M., Y. Harushima, Y. Nagamura, N. Kurata, Y. Minobe & T. Sasaki, 1997. Identification of quantitative trait loci controlling date in rice using a high density linkage map. Theor Appl Genet 95: 1025–1032.

    Article  CAS  Google Scholar 

  • Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Mona, T. Fuse, Y. Baba, K. Yamamoto & T. Sasaki, 2000. Hd1, Major photoperiod-sensitivity QTL in rice, encodes a protein with the structure of zinc finger transcriptor factor. In: Workshop Abstracts. Plant & Animal Genome VIII, January 9–12, 2000, San Diego, USA, pp 41.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chantereau, J., Trouche, G., Rami, J. et al. RFLP mapping of QTLs for photoperiod response in tropical sorghum. Euphytica 120, 183–194 (2001). https://doi.org/10.1023/A:1017513608309

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017513608309

Navigation