Skip to main content
Log in

Extended Kelvin Theorem in Relativistic Magnetohydrodynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We prove the existence of a generalization of Kelvin's circulation theorem in general relativity which is applicable to perfect isentropic magnetohydrodynamic flow. The argument is based on a new version of the Lagrangian for perfect magnetohydrodynamics. We illustrate the new conserved circulation with the example of a relativistic magnetohydrodynamic flow possessing three symmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. D. Bekenstein and E. Oron, “New conservation laws in general relativistic magnetohydrodynamics,” Phys. Rev. D 18, 1809 (1978).

    Google Scholar 

  2. J. D. Bekenstein and A. Oron, “Conservation of circulation in magnetohydrodynamics,” Phys. Rev. E 62, 5594 (2000).

    Google Scholar 

  3. K. Elsässer, “Potential equations for plasmas round a rotating black hole,” Phys. Rev. D 62, 044007 (2000).

    Google Scholar 

  4. A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics (Benjamin, New York, 1967).

    Google Scholar 

  5. P. Penfield, Jr., “Hamilton's principle for fluids,” Phys. Fluids 9, 1184 (1966).

    Google Scholar 

  6. A. H. Taub, “General relativistic variational principles for perfect fluids,” Phys. Rev. 94, 1468 (1954); ``Stability of general relativistic gaseous masses and variational principles,'' Commun. Math. Phys. 15, 235 (1969).

    Google Scholar 

  7. T. Kodama, Th.-H. Elze, Y. Hama, M. Makler, and J. Rafelski, “Variational principle for relativistic fluid dynamics,” J. Phys. G 25, 1935 (1999).

    Google Scholar 

  8. C. C. Lin, “Hydrodynamics of helium II,” in Liquid Helium:Proceedings of the Interna-tional School of Physics “Enrico Fermi,” Course XXI, G. Careri, ed. (Academic, New York, 1963), p.93.

    Google Scholar 

  9. B. F. Schutz, “Perfect fluids in general relativity: velocity potentials and a variational principle,” Phys. Rev. D 2, 2762 (1970).

    Google Scholar 

  10. B. Carter, “Perfect fluids and magnetic field conservation laws in the theory of black hole accretion rings,” in Active Galactic Nuclei, C. Hazard and S. Mitton, eds. (Cambridge University Press, Cambridge, 1977), p. 273; ``Vortex dynamics in superfluids,'' in Topological Defects and Nonequilibrium Dynamics of Symmetry Breaking Phase Transi-tions, Y. Bunkov and H. Godfrin, eds. (Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  11. A. Achterberg, ”Variational principle for relativistic magnetohydrodynamics,” Phys. Rev. A 28, 2449 (1983).

    Google Scholar 

  12. C. Thompson, “Magnetohydrodynamics in the extreme relativistic limit,” Phys. Rev. D 57, 3219 (1998).

    Google Scholar 

  13. J. S. Heyl and L. Hernquist, “Nonlinear QED effects in strong field magnetohydrodynamics,” Phys. Rev. D 59, 045005 (1999).

    Google Scholar 

  14. I. D. Novikov and K. S. Thorne, “Astrophysics of black holes,” in Black Holes, B. S. DeWitt and C. M. DeWitt, eds. (Gordon 6 Breach, New York, 1973), p. 343. 907 Extended Kelvin Theorem in Relativistic Magnetohydrodynamics

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekenstein, J.D., Oron, A. Extended Kelvin Theorem in Relativistic Magnetohydrodynamics. Foundations of Physics 31, 895–907 (2001). https://doi.org/10.1023/A:1017507917267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017507917267

Keywords

Navigation