Abstract
We prove the existence of a generalization of Kelvin's circulation theorem in general relativity which is applicable to perfect isentropic magnetohydrodynamic flow. The argument is based on a new version of the Lagrangian for perfect magnetohydrodynamics. We illustrate the new conserved circulation with the example of a relativistic magnetohydrodynamic flow possessing three symmetries.
Similar content being viewed by others
REFERENCES
J. D. Bekenstein and E. Oron, “New conservation laws in general relativistic magnetohydrodynamics,” Phys. Rev. D 18, 1809 (1978).
J. D. Bekenstein and A. Oron, “Conservation of circulation in magnetohydrodynamics,” Phys. Rev. E 62, 5594 (2000).
K. Elsässer, “Potential equations for plasmas round a rotating black hole,” Phys. Rev. D 62, 044007 (2000).
A. Lichnerowicz, Relativistic Hydrodynamics and Magnetohydrodynamics (Benjamin, New York, 1967).
P. Penfield, Jr., “Hamilton's principle for fluids,” Phys. Fluids 9, 1184 (1966).
A. H. Taub, “General relativistic variational principles for perfect fluids,” Phys. Rev. 94, 1468 (1954); ``Stability of general relativistic gaseous masses and variational principles,'' Commun. Math. Phys. 15, 235 (1969).
T. Kodama, Th.-H. Elze, Y. Hama, M. Makler, and J. Rafelski, “Variational principle for relativistic fluid dynamics,” J. Phys. G 25, 1935 (1999).
C. C. Lin, “Hydrodynamics of helium II,” in Liquid Helium:Proceedings of the Interna-tional School of Physics “Enrico Fermi,” Course XXI, G. Careri, ed. (Academic, New York, 1963), p.93.
B. F. Schutz, “Perfect fluids in general relativity: velocity potentials and a variational principle,” Phys. Rev. D 2, 2762 (1970).
B. Carter, “Perfect fluids and magnetic field conservation laws in the theory of black hole accretion rings,” in Active Galactic Nuclei, C. Hazard and S. Mitton, eds. (Cambridge University Press, Cambridge, 1977), p. 273; ``Vortex dynamics in superfluids,'' in Topological Defects and Nonequilibrium Dynamics of Symmetry Breaking Phase Transi-tions, Y. Bunkov and H. Godfrin, eds. (Kluwer Academic, Dordrecht, 2000).
A. Achterberg, ”Variational principle for relativistic magnetohydrodynamics,” Phys. Rev. A 28, 2449 (1983).
C. Thompson, “Magnetohydrodynamics in the extreme relativistic limit,” Phys. Rev. D 57, 3219 (1998).
J. S. Heyl and L. Hernquist, “Nonlinear QED effects in strong field magnetohydrodynamics,” Phys. Rev. D 59, 045005 (1999).
I. D. Novikov and K. S. Thorne, “Astrophysics of black holes,” in Black Holes, B. S. DeWitt and C. M. DeWitt, eds. (Gordon 6 Breach, New York, 1973), p. 343. 907 Extended Kelvin Theorem in Relativistic Magnetohydrodynamics
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bekenstein, J.D., Oron, A. Extended Kelvin Theorem in Relativistic Magnetohydrodynamics. Foundations of Physics 31, 895–907 (2001). https://doi.org/10.1023/A:1017507917267
Issue Date:
DOI: https://doi.org/10.1023/A:1017507917267