Skip to main content
Log in

Search for New Materials and Techniques for Superfluid Weak Links

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superfluid 3He-flow in channels essentially smaller than the coherence length would be challenging. In this paper, a technique is described which allows the production of almost circularly shaped 10 nm diameter holes in nitrocellulose films of 14 nm thickness. These geometrical dimensions also allow Josephson effect experiments in superfluid 4He of about 1% superfluid density around temperatures of 0.9999 Tλ. The hole density in the membranes can be as high as 10 8 cm2 which allows one to work with high Josephson currents while at the same time the decoherence effect of vibrations is minimised. Alternative solutions for even smaller holes in several differently designed membranes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 54, 2704 (1985).

    Google Scholar 

  2. O. Avenel and E. Varoquaux, Phys. Rev. Lett. 60, 416 (1988).

    Google Scholar 

  3. O. Avenel, Y. Mukharsky, and E. Varoquaux, Physica B 280, 130 (2000).

    Google Scholar 

  4. S.V. Pereverzev, A. Loshak, S. Backhaus, J.C. Davis, and R.E. Packard, Nature 388, 449 (1997).

    Google Scholar 

  5. S. Backhaus, S.V. Pereverzev, A. Loshak, J.C. Davis, and R.E. Packard, Science 278, 1435 (1997).

    Google Scholar 

  6. R.W. Simmonds, A. Loshak, A. Marchenkov, S. Backhaus, S.V. Pereverzev, J.C. Davis, and R.E. Packard, Phys. Rev. Lett. 81, 1247 (1998).

    Google Scholar 

  7. H.J. Paik, J. Appl. Phys. 47, 1168 (1976).

    Google Scholar 

  8. S.V. Pereverzev and J.C. Davis, Czech. J. Physics 46,S1, 109 (1996).

    Google Scholar 

  9. S.V. Pereverzev and G. Eska, Physica B 284–288, 85 (2000).

    Google Scholar 

  10. S.V. Pereverzev, J. Low Temp. Phys. 101, 573 (1995).

    Google Scholar 

  11. Ch. Trautmann, R. Spohr, J. Vetter, G. Eska, and Y. Hirayoshi, Nucl. Tracks Radiat. Meas. 19, 109 (1991).

    Google Scholar 

  12. R.E. Kesting, Syntetic Polymeric Membranes, John Wiley & Sons, Inc., New York (1985).

    Google Scholar 

  13. N. Platé and Y. Yampol'skii, in Polymeric Gas Separation Membranes, edited by D.R. Paul and Y. Yampol'skii, CRC Press, Inc., Boca Raton (1994), p. 155.

    Google Scholar 

  14. B.E. Fischer and R. Spohr, Rev. Mod. Phys. 55, 907 (1983).

    Google Scholar 

  15. T.M. Ivkova, V.K. Lichtenstein and E.D. Olshanski, Nucl. Instr. and Meth. A 362, 77 (1995); V.K. Lichtenstein, T.M. Ivkova, E.D. Olshanski, I. Feigenbaum, R. DiNardo and M. Döbeli, Nucl. Instr. and Meth. A 397, 140 (1997).

    Google Scholar 

  16. E. Davison and W. Colquhoun, J. Electron. Microsc. Techn. 2, 35 (1985) and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereverzev, S.V., Eska, G. Search for New Materials and Techniques for Superfluid Weak Links. Journal of Low Temperature Physics 124, 383–393 (2001). https://doi.org/10.1023/A:1017506825058

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017506825058

Keywords

Navigation