Zooplankton community structure and environmental conditions in a set of interconnected ponds

Abstract

We studied the zooplankton community structure in a set of 33 interconnected shallow ponds that are restricted to a relatively small area (‘De Maten’, Genk, Belgium, 200 ha). As the ponds share the same water source, geology and history, and as the ponds are interconnected (reducing chance effects of dispersal with colonisation), differences in zooplankton community structure can be attributed to local biotic and abiotic interactions. We studied zooplankton community, biotic (phytoplankton, macrophyte cover, fish densities, macroinvertebrate densities), abiotic (turbidity, nutrient concentrations, pH, conductivity, iron concentration) and morphometric (depth, area, perimeter) characteristics of the different ponds. Our results indicate that the ponds differ substantially in their zooplankton community structure, and that these differences are strongly related to differences in trophic structure and biotic interactions, in concordance with the theory of alternative equilibria. Ponds in the clear-water state are characterised by large Daphnia species and species associated with the littoral zone, low chlorophyll-a concentrations, low fish densities and high macroinvertebrate densities. Ponds in the turbid-water state are characterised by high abundances of rotifers, cyclopoid copepods and the opposite environmental conditions. Some ponds show an intermediate pattern, with a dominance of small Daphnia species. Our results show that interconnected ponds may differ strongly in zooplankton community composition, and that these differences are related to differences in predation intensity (top-down) and habitat diversity (macrophyte cover).

This is a preview of subscription content, access via your institution.

References

  1. Brendonk, T. U. & W. J. O'Brien, 1996. Movement response of Chaoborus to chemicals from a predator and prey. Limnol. Oceanogr. 41: 1829–1832.

    Google Scholar 

  2. Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361–369.

    Google Scholar 

  3. Carpenter, S. R., J. F. Kitchell & J. R. Hodgson, 1985. Cascading trophic interactions and lake productivity. Bioscience 35: 634–639

    Google Scholar 

  4. Carpenter, S. R. & J. F. Kitchell, 1993. The Trophic Cascade in Lakes.Cambridge University Press, Cambridge.

    Google Scholar 

  5. Clark labs, 1997. IDRISI for Windows, version 2.0. Clark labs for Carthographic Technology and Geographic Analysis, Worcester.

  6. Crowder, L. B. & W. E Cooper, 1982. Habitat, structural complexity and the interaction between bluegills and their prey. Ecology 63: 1801–1813.

    Google Scholar 

  7. Daniëls, L., 1998. Kansen voor natuurbehoud en -herstel. Natuurreservaten: 4–7.

  8. De Pauw, N. & R. Vannevel, 1993. Macroinvertebraten en waterkwaliteit. Stichting Leefmilieu, Antwerpen.

  9. Diehl, S., 1992. Fish predation and bentic community structure: the role of omnivory and habitat complexity. Ecology 73: 1646–1661.

    Google Scholar 

  10. Dodson, S. I., 1991. Species richness of crustacean zooplankton in European lakes of different sizes. Limnol. Verh. int. Ver. Theor. Angew. 24: 1223–1229.

    Google Scholar 

  11. Downing, J. A., M. Perusse & Y. Frenette, 1987. Effect of interreplicate variance on zooplankton sampling design and data analysis. Limnol. Oceanogr. 32: 673–680.

    Google Scholar 

  12. Drenner, R. W., R. Strickler & W. J. O'Brien, 1978. Capture probability: the role of zooplankton escape escape probability in selective feeding of zooplanktivorous fish. J. Fish. Res. Bd Can.F 35: 1370–1373.

    Google Scholar 

  13. Edmonson, W. T. & G. G. Winberg, 1971. A manual on methods for the assessment of secondary productivity in fresh waters. IBP Handbook Number 17. Blackwell, Oxford.

    Google Scholar 

  14. Flößner, D., 1972. Krebstiere, Crustacea; Kiemen-und Blattfüsser, Branchiopoda; Fischläuse, Branchiura. In Die Tierwelt Deutschlands 60. Teil G. Fisher Verlag, Jena.

    Google Scholar 

  15. Flößner, D. & K. Kraus, 1986. On the taxonomy of the Daphnia hyalina-galeata complex (Crustacea: Cladocera). Hydrobiologia 137: 97–115.

    Google Scholar 

  16. Fussman, G., 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities: an enclosure study. J. Plankton Res. 10: 1897–1915.

    Google Scholar 

  17. Gilinsky, E., 1984. The role of fish predation and spatial heterogeneity in determining benthic community structure. Ecology 65: 455–468.

    Google Scholar 

  18. Gliwicz, M. Z. & J. Pijanowska, 1986. The role of predation in zooplankton succession. In Sommer, U. (ed.), Plankton Ecology: Succession of Plankton Communities. Springer Verlag, Berlin: p 253–296.

    Google Scholar 

  19. Gliwicz, M. Z., 1990. Food thresholds and body size in Cladocera. Nature 343: 638–640.

    Google Scholar 

  20. Hall, D. J., S. T. Threlkeld, C.W. Burns & P. H. Crowley, 1974. The size-efficiency hypothesis and the size structure of zooplankton communities. Annu. Rev. Ecol. Syst. 7: 177–208.

    Google Scholar 

  21. Hill, M. O., 1973. Diversity and eveness: a unifying notation and its consequences. Ecology 54: 427–432.

    Google Scholar 

  22. Irvine, K., B. Moss & H. Balls, 1989. The loss of submerged plants with eutrophication II. Relationships between fish and zooplankton in a set of experimental ponds, and conclusions. Freshwat. Biol. 22: 89–107.

    Google Scholar 

  23. Irvine, K., B. Moss & J. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied cladocera against fish predation in a shallow eutrophic lake. Hydrobiologia 200/201: 379–389.

    Google Scholar 

  24. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990. Fish manipulations as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold values, long-term stability and conclusions. Hydrobiologia 200/201: 219–228.

    Google Scholar 

  25. Keller, W. & M. Conlon, 1994. Crustacean zooplankton communities and lake morphometry in precambrian shield lakes. Can. J. Fish. aquat. Sci. 51: 2424–2434.

    Google Scholar 

  26. Lampert, W., 1987. Predictability in lake ecosystems: the role of biotic interactions. Ecol. Stud. 61: 323–346.

    Google Scholar 

  27. La Row, E. J. & G. R. Marzolf, 1970. Behavioral differences between 3rd and 4th instars of Chaoborus punctipennis Say. Am. Midl. Nat. 84: 428–436.

    Google Scholar 

  28. Lauridsen, T. L. and D. M. Lodge, 1996. Avoidance by Dapnia magna of fish and macrophytes: chemical cues and predatormediated use of macrophyte habitat. Limnol. Oceanogr. 41: 794–798.

    Google Scholar 

  29. Michels, E., K. Cottenie, L. Neys & L. DeMeester, 2001. Zooplankton on the move: first results on the quantification of dispersal of zooplankton in a set of interconnected ponds. Hydrobiologia 442: 177–126.

    Google Scholar 

  30. Murdoch, W. W. & M. A. Scott, 1984. Stability and extinction of laboratory populations of zooplankton preyed on by the backswimmer Notonecta. Ecology 65: 1231–1248.

    Google Scholar 

  31. Murphy, J. & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Anal. Chim. acta 27: 31–36.

    Google Scholar 

  32. Patalas, K., 1971. Crustacean plankton communities in forty-five lakes in the Experimental Lakes Area, northwestern Ontario. J. Fish. Res. B Can. 28: 231–244.

    Google Scholar 

  33. Perkin Elmer Corporation, 1982. Analytical methods for atomic absorption spectrophotometry.

  34. Pinel-Alloul, B., T. Niyonsenga & P. Legendre, 1995. Spatial and environmental components of freshwater zooplankton structure. Ecoscience 2: 1–19.

    Google Scholar 

  35. Proctor, V. W., 1964. Viability of crustacean eggs recoverd from ducks. Ecology 45: 656–658.

    Google Scholar 

  36. Proctor V. W. & C. Malone, 1965. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tracts of birds. Ecology 46: 728–729.

    Google Scholar 

  37. Reid, R. A., K. M. Somers & S. M. David, 1995. Spatial and temporal variation in littoral-zone benthic invertebrates from three south-central Ontario Lakes. Can. J. Fish. aquat. Sci. 52: 1406–1420.

    Google Scholar 

  38. Reinertsen, H., A. Jensen, J. L. Koksvik, A. Langeland & Y. Olsen, 1990. Effects of fish removal on the limnetic ecosystem of a eutrophic lake. Can. J. Fish. aquat. Sci. 47: 166–173.

    Google Scholar 

  39. Reinertsen, H., J. I. Koksvik & A. Haug, 1997. Effects of fish elimination on the phytoplankton and zooplankton in a small eutrophic lake. Verh. int. Ver. Limnol. 26: 593–598.

    Google Scholar 

  40. Scheffer, M., 1998. Ecology of shallow lakes. Chapman & Hall, London.

    Google Scholar 

  41. Scheffer, M., S. H. Hosper, M.-L. Meijer & B. Moss, 1993. Alternative equilibria in shallow lakes. Trends Ecol. Evol. 8: 275–279.

    Google Scholar 

  42. Smirnov, N. N., 1996. Cladocera: the Chydorinae and Sayciinae (Chydoridae) of the world. In Dumont, H. J. F. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. SPB Academic Publishing, Amsterdam. 197 pp.

    Google Scholar 

  43. Sokal, R. R. & F. J. Rohlf, 1981. Biometry: the principles and practice of statistics in biological research. W.H. Freeman & Co., New York.

    Google Scholar 

  44. Sprules, W. G., 1975. Midsummer crustacean zooplankton communities in acid-stressed lakes. J. Fish. Res. B Can. 32: 389–395.

    Google Scholar 

  45. Statsoft, inc., 1997. STATISTICA for windows (Computer program manual). Tulsa Oklahoma.

    Google Scholar 

  46. Sutherland, W. J., 1996. Ecological sensus techniques. Cambridge University Press, Cambridge.

    Google Scholar 

  47. Talling, J. F. & D. Driver, 1963. Some problems in the estimation of chlorophyll-a in phytoplankton. Proceedings of a conference on primary productivity measurements. U.S. atomic energy communitcation. TID-7633: 142–146.

  48. Technicon Corporation, 1962. General operation instruction manual. Tarytown, New York.

    Google Scholar 

  49. ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO reference manual and user's guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca.

    Google Scholar 

  50. Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing, in the presence of zooplanktivorous fish, in a shallow wetland ecosystem. Limnol.Oceanogr. 29: 472–486. Tittel, J., B. Zippel & W. Geller.

    Google Scholar 

  51. Geller, 1998. Relationships between plankton community structure and plankton size distribution in lakes of northern Germany. Limnol. Oceanogr. 43: 1119–1132.

    Google Scholar 

  52. van den Berg, M. S., H. Coops, R. Noordhuis, J. Van Schie & J. Simons, 1997. Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes. Hydrobiologia 342/343: 143–150.

    Google Scholar 

  53. Vanni, M. J., C. D. Layne & S. E. Arnott, 1997. ‘Top-down’ trophic interactions in lakes: effects fo fish on nutrient dynamics. Ecology 78: 1–20.

    Google Scholar 

  54. Ward, J. H., 1963. Hierarchical grouping to optimize an objective function. J. am. Stat. Asso. 58, 236–244.

    Google Scholar 

  55. Watanabe, F. S.& S. R. Olsen, 1965. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soils. Soil Sci. Soc. am. Proc. 29: 677–678.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cottenie, K., Nuytten, N., Michels, E. et al. Zooplankton community structure and environmental conditions in a set of interconnected ponds. Hydrobiologia 442, 339–350 (2001). https://doi.org/10.1023/A:1017505619088

Download citation

  • zooplankton
  • community structure
  • shallow ponds
  • alternative equilibria
  • fish predation
  • macrophytes