Skip to main content
Log in

Determination of J-R curve of polypropylene copolymers using the normalization method

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper the applicability of the load normalization method to determine J-R curves of polypropylene copolymers (PP) is analyzed. This method allows the determination of resistance curves ideally from a single fracture test, and it is based on the load separation principle, which assumes that load can be separated in two multiplicative functions, the geometry function, G(a/W), and the deformation function, Hpl/W), which depend of the crack depth and the plastic displacement, respectively. The load separation validity has been checked for two different PP copolymers (block and random copolymers) and the load normalization method has been applied in order to determine and analyze the resistance curves, which have been compared, as a reference, with those obtained by the multiple specimen method. The applicability of the load normalization method to PP copolymers is analyzed by introducing some variations in the general procedure: Firstly, the deformation function is determined using either a power law fit or the so-called LMN function. With the power law, two different fitting methods have been tested: the usual “6 + 1” method and a “6 + 6” method proposed here for giving more weight to the final point of the curve. Secondly, the influence of the material crack tip blunting has been analyzed quantifying it through different values of the constriction factor (m) in the general expression of the blunting line. Finally, the effect of the separable blunting region extension on the J-R curve has been also analyzed by establishing different separable blunting zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. Begley and J. D. Landes, in “Fracture Toughness,” STP 514 (ASTM, Philadelphia, 1972) p. 1.

    Google Scholar 

  2. ASTM E813–87 in “Annual Book of ASTM Standards,” Part 10 (ASTM, Philadelphia, 1987) p. 686.

    Google Scholar 

  3. ESIS Technical Committee 4 (European Structural Integrity Society, March 1991).

  4. J. R. Landes and R. Herrera, Int. J. Fract. 36 (1988) R9.

    Google Scholar 

  5. H. A. Ernst, P. C. Paris, M. Rossow and J. W. Hutchinson, in “Fracture Mechanics,” STP 677 (ASTM, Philadelphia, 1979) p. 581.

    Google Scholar 

  6. H. A. Ernst, P. C. Paris and J. D. Landes, in Fracture Mechanics: Thirteenth Conference, STP 743 (ASTM, Philadelphia, 1981) p. 476.

    Google Scholar 

  7. M. H. Sharobeam and J. D. Landes, Int. J. Fract. 47 (1991) 81.

    Google Scholar 

  8. Idem., ibid. 59 (1993) 213.

  9. Idem., ibid. 61 (1993) 379.

  10. J. D. Landes, Z. Zhou, K. Lee and R. Herrera, J. Test. Eval. 19 (1991) 305.

    Google Scholar 

  11. C. R. Bernal, A. N. Cassanelli and P. M. Frontini, Polym. Test. 14 (1995) 85.

    Google Scholar 

  12. C. R. Bernal, P. E. Montemartini and P. M. Frontini, J. Polym. Sci., Part B: Polym. Phys. 34 (1996) 1869.

    Google Scholar 

  13. M. Che, W. Grellmann, S. Seidler and J. D. Landes, Fatigue Fract. Engng. Mater. Struct. 20 (1997) 119.

    Google Scholar 

  14. J. D. Landes and Z. Zhou, Int. J. Fract. 63 (1993) 383.

    Google Scholar 

  15. Z. Zhou, J. D. Landes and D. D. Huang, Polym. Engng. Sci. 34 (1994) 128.

    Google Scholar 

  16. V. Garcia-Brosa, C. Bernal and P. Frontini, Engng. Fract. Mech. 62 (1999) 231.

    Google Scholar 

  17. R. Herrera and J. D. Landes, in Fracture Mechanics: Twenty-First Symposium, STP 1074 (ASTM, Philadelphia, 1990) p. 24.

    Google Scholar 

  18. T. W. Orange, in Fracture Mechanics: Twenty-First Symposium, STP 1074 (ASTM, Philadelphia, 1990) p. 545.

    Google Scholar 

  19. V. Kumar, M. D. German and C. F. Shih, An engineering approach for elastic-plastic fracture analysis, EPRI Report NP1931, 1981.

  20. C. Bernal, A. Cassanelli and P. Frontini, Polymer 37 (1996) 4033.

    Google Scholar 

  21. J. R. Rice, J. Appl. Mech. 35 (1968) 379.

    Google Scholar 

  22. R. Herrera and J. D. Landes, Int. J. Fract. 16 (1988) 427.

    Google Scholar 

  23. C. Bernal, M. Rink and P. Frontini, Macromol. Symp. 147 (1999) 235.

    Google Scholar 

  24. J. R. Rice, P. C. Paris and J. G. Merkle, in “Progress in Flaw Growth and Fracture Toughness Testing,” STP 536 (ASTM, Philadelphia, 1973) p. 231.

    Google Scholar 

  25. J. Chakrabarty, “Theory of Plasticity” (McGraw-Hill, Singapore, 1987) p. 11.

    Google Scholar 

  26. A. N. C Assanelli and L. A. deVedia, Int. J. Fract. 83 (1997) 167.

    Google Scholar 

  27. J. I. Velasco, C. Morhain, D. ArencÓn, O. O. Santana and M. L. Maspoch, Polymer Bulletin 41 (1998) 615.

    Google Scholar 

  28. W. Grellmann and M. Che, J. Appl. Polym. Sci., 66 (1997) 1237.

    Google Scholar 

  29. Y. Han, R. Lach and W. Grellmann, Angew. Makromol. Chemie 270 (1999) 13.

    Google Scholar 

  30. I. Narisawa, Polym. Engng. Sci. 271(1) (1987) 41.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morhain, C., Velasco, J.I. Determination of J-R curve of polypropylene copolymers using the normalization method. Journal of Materials Science 36, 1487–1499 (2001). https://doi.org/10.1023/A:1017500930544

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017500930544

Keywords

Navigation