Skip to main content
Log in

The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The empirical distributions of the average viability and fitness of mutation accumulation lines of Drosophila melanogaster were analyzed using minimum distance estimation. Data come from two different experimental designs where mutations were allowed to accumulate: 1) in copies of chromosome II protected from natural selection and recombination (viability: Mukai et al., 1972; Ohnishi, 1977; fitness: Houle et al., 1992), 2) in inbred lines derived from the same isogenic stock (viability: Fernández & López-Fanjul, 1996; fitness: this paper). Information from all data sets converged, indicating that the mutational rates were small, about 1% for viability and 3% for fitness. For both traits, the rate of mutational decline appears to be smaller than suggested by previous studies (about one-fifth of the latter), the average mutational effect was neither severe nor very slight, ranging from −0.1 to −0.3, and the distribution of mutant effects was, at most, slightly leptokurtic. Therefore, the mutational load in natural populations is one to two orders of magnitude smaller than previously thought (as based upon analyses conditional to estimates of the mutational decline of viability or fitness that appear to be biased upward). Over 95% of the mutational variance of each trait was contributed by non-slightly deleterious mutations (absolute homozygous effect larger than 0.03 or 0.1, depending on the data set considered) occurring at a rate not higher than 0.025 per haploid genome and generation. Our data suggest that most deleterious mutations affecting fitness act mainly through a single component-trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bateman, A.J., 1959. The viability of near-normal irradiated chromosomes. Intern. J. Radiation Biol. 1: 170-180.

    Google Scholar 

  • Caballero, A., M.A. Toro & C. López-Fanjul, 1991. the response to artificial selection from new mutations in Drosophila melanogaster. Genetics 128: 89-102.

    PubMed  CAS  Google Scholar 

  • Chovnick, A., 1973. Gene conversion and transfer of genetic information within the inverted region of inversion heterozygotes. Genetics 75: 123-131.

    PubMed  CAS  Google Scholar 

  • Crow, J.F., 1992. The high genomic mutation rate. Evolutionary Genetics 2: 605-607.

    CAS  Google Scholar 

  • Crow, J.F.&M. Kimura, 1970. An Introduction to Population Genetics Theory. New York: Harper & Row.

    Google Scholar 

  • Crow, J.F. & M.J. Simmons, 1983. The mutation load in Drosophila, pp. 1-35 in The Genetics and Biology of Drosophila, vol. 3C, edited by M. Ashburner, H.L. Carson & J.N. Thompson Jr. London: Academic Press.

    Google Scholar 

  • Fernández, J. & C. López-Fanjul, 1996. Spontaneous mutational variances and covariances for fitness-related traits in Drosophila melanogaster. Genetics 143: 829-837.

    PubMed  Google Scholar 

  • Fernández, J. & C. López-Fanjul, 1997. Spontaneous mutational genotype-environment interaction for fitness-related traits in Drosophila melanogaster. Evolution 51: 856-864.

    Article  Google Scholar 

  • Fry, J.D., S.L. Heinsohn & T.F.C. Mackay, 1996. The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50: 2316-2327.

    Article  Google Scholar 

  • García-Dorado, A., 1997. The rate and effects distribution of viability mutation in Drosophila: minimum distance estimation. Evolution 51: 1130-1139.

    Article  Google Scholar 

  • García-Dorado, A. & J.A. González, 1996. Stabilizing selection detected for bristle number in Drosophila melanogaster. Evolution 50: 1573-1578.

    Article  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomicmutation rate for fitness in Drosophila. Nature 359: 58-60.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational variabilities. Genetics 143: 1467-1483.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1994. The distribution of mutation effects on viability in Drosophila melanogaster. Genetics 138: 1315-1322.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D., 1996. Nature of deleterious mutation load in Drosophila. Genetics 144: 1993-1999.

    PubMed  CAS  Google Scholar 

  • Keightley, P.D. & W.G. Hill, 1990. Variation maintained in quantitative traits with mutation-selection balance: pleiotropic side effects on fitness traits. Proc. R. Soc. Lond. B Biol. Sci. 253: 291-296.

    Google Scholar 

  • Kimura, M., 1969. The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61: 893-903.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A.S., 1995. Contamination of the genome by very slightly deleterious mutations: why have we not died 100 times over? J. Theor. Biol. 175: 583-594.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashov, A.S. & D. Houle, 1994. Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc. R. Soc. Lond. B Biol. Sci. 258: 221-227.

    CAS  Google Scholar 

  • Lande, R., 1995. Mutation and conservation. Conservation Biology 4: 782-791.

    Article  Google Scholar 

  • Lynch, M., J. Conery & R. Bürger, 1995. Mutation accumulation and the extinction of small populations. Am. Nat. 146: 489-518.

    Article  Google Scholar 

  • Mukai, T., 1964. The genetic structure of natural populations of Drosophila melanogaster. I. Spontaneous mutation rate of polygenes controlling viability. Genetics 50: 1-19.

    PubMed  CAS  Google Scholar 

  • Mukai, T., S.I. Chigusa, L.E. Mettler & J.F. Crow, 1972. Mutation rate and dominance of genes affecting viability in Drosophila melanogaster. Genetics 72: 333-355.

    Google Scholar 

  • Ohnishi, O., 1977. Spontaneous and ethyl methanesulfonate-induced mutations controlling viability in Drosophila melanogaster. II. Homozygous effects of polygenic mutations. Genetics 87: 529-545.

    PubMed  CAS  Google Scholar 

  • Parr, W.C. & W.R. Schucany, 1988. Minimum distance and robust estimation. J. Amer. Stat. Assoc. 75: 616-624.

    Article  Google Scholar 

  • Santiago, E., J. Albornoz, A. Domínguez, M.A. Toro & C. López-Fanjul, 1992. The distribution of effects of spontaneous mutations on quantitative traits and fitness in Drosophila melanogaster. Genetics 140: 219-229.

    Google Scholar 

  • Wolfowitz, J., 1957. The minimum distance method. Ann. Math. Statist. 28: 75-88.

    Google Scholar 

  • Woodward, W.A., W.C. Parr, W.R. Schucany & H. Lindsley, 1984. A comparison of minimum distance and maximum likelihood estimation of a mixture proportion. J. Amer. Stat. Assoc. 79: 590-598.

    Article  Google Scholar 

  • Wray, N.R., 1990. Accounting for mutation effects in the additive genetic varianceco-variance matrix and its inverse. Biometrics 46: 177-186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos López-Fanjul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Dorado, A., Monedero, J.L. & López-Fanjul, C. The mutation rate and the distribution of mutational effects of viability and fitness in Drosophila melanogaster. Genetica 102, 255–265 (1998). https://doi.org/10.1023/A:1017086909282

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017086909282

Navigation