Skip to main content
Log in

Population differentiation through mutation and drift – a comparison of genetic identity measures

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Different genetic identity or distance measures are compared that consider allelic variation within and between populations. Particularily we analyse those suggested by Nei ( IS, DS), Rogers (DR), Reynolds, Weir and Cockerham (Dθ), Nei, Tajima and Tateno (DA), Tomiuk and Loeschcke (ITL, DTL) and Goldstein et al. ((δμ)2). The simulations focus on the influence of non-equilibrium conditions on the stability of these measures. The degree of homozygosity of an ancestral population before it splits into two sister populations is most important for the stability of the different estimates of genetic identity. If populations are not close to their equilibrium homozygosity, a considerable bias can occur and, thereby, provide very misleading estimates of the time span since divergence. The ITL-measure based on estimates of ancestral alleles is more robust than other measures of genetic identity, especially for large population sizes and high mutation rates. For the infinite allele model, the analysis shows that more precise estimates of the frequency of ancestral alleles can greatly improve the reliability of the estimate of genetic identity in the case of ITL. For the stepwise mutation model, the TL-measure combines the attributes of the DA- and (δμ)2-measures. The TL-measure is efficient for the construction of the correct tree topology of related populations as well as for the estimation of the branch length when protein or microsatellite data are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bowcock, A.M., A. Ruiz-Linares, J. Tomfohrde, E. Minch, J.R. Kidd & L.L Cavalli-Sforza, 1994. High resolution of human evolutionary trees with polymorphic microsatellites. Nature 368: 455-457.

    Article  PubMed  CAS  Google Scholar 

  • Cavalli-Sforza, L.L. & A.F.W. Edwards, 1967. Phylogenetic analysis: Models and estimation procedures. Amer. J. Hum. Genet. 19: 233-257.

    PubMed  CAS  Google Scholar 

  • Chakraborty, R. & L. Jin, 1993. A unified approach to study hypervariable polymorphisms: statistical consideration of determining relatedness and population distances, pp. 153-175 in DNA Fingerprinting: State of Science edited by S.D.J. Pena, R. Chakraborty, J.T. Epplen and A.J. Jeffreys. Birkhäuser Verlag, Basel.

    Google Scholar 

  • Chakraborty, R. & M. Nei, 1976. Bottleneck effects on average heterozygosity and genetic distance with the stepwise mutation model. Evolution 31: 347-356.

    Article  Google Scholar 

  • Clark, A.G. & C.M.S. Lanigan, 1993. Prospects for estimating nucleotide divergence with RAPDs. Mol. Biol. Evol. 10: 1096- 1111.

    PubMed  CAS  Google Scholar 

  • Edwards, A.W.F., 1971. Distances between populations on the basis of gene frequencies. Biometrics 27: 873-881.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, M.W., A. Bergman, D.D. Pollock & D.B. Goldstein, 1997. Microsatellite genetic distances with range constraints: Analytic description and problems of estimation. Genetics 145: 207-216.

    PubMed  CAS  Google Scholar 

  • Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford.

  • Goldstein, D.B., A. Ruis Linares, L.L. Cavalli-Sforza & M.W. Feldman, 1995a. Genetic absolute dating based on microsatellites and the origin of modern humans. Proc. Natl. Acad. Sci. USA 92: 6723-6727.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, D.B., A. Ruis Linares, L.L. Cavalli-Sforza & M.W. Feldman, 1995b. An evaluation of genetic distances for use with mircosatellite loci. Genetics 139: 463-471.

    PubMed  CAS  Google Scholar 

  • Goldstein, D.B., L.A. Zhivotovsky, K. Nayar, A. Ruiz Linares, L.L. Cavalli-Sforza & M.W. Feldman, 1996. Statistical properities of the variation at linked microsatellite loci: Implications for the history of human Y chromosomes. Mol. Biol. Evol. 13: 1213- 1218.

    PubMed  CAS  Google Scholar 

  • Hartl, D.L. & A.G. Clark, 1989. Principles of Population Genetics. Sinauer Associates, Massachusetts.

    Google Scholar 

  • Hasegawa, M. & H. Kishino, 1991. DNA sequence analysis and evolution of Hominoidea, pp. 303-317 in New Aspects of the Genetics of Molecular Evolution, edited by M. Kimura and N. Takahata. Japan Sci. Press, Tokyo/Springer-Verlag, Berlin.

    Google Scholar 

  • Hedrick, P.W., 1971. A new approach to measuring genetic similarity. Evolution 25: 276-280.

    Article  Google Scholar 

  • Hubby, J.L. & R.C. Lewontin, 1966. A molecular approach to the study of genic heterozygosity in natural populations. I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics 54: 577-594.

    PubMed  CAS  Google Scholar 

  • Hillis, D.M., 1984. Misuse and modification of Nei's genetic distance. Syst. Zool. 33: 238-240.

    Article  Google Scholar 

  • Langley, C.H. & Fitch, W.M., 1974. An examination of the constancy of the rate of molecular evolution. J. Mol. Evol. 3: 161-177.

    Article  PubMed  CAS  Google Scholar 

  • Latter, B.D.H., 1973. Measures of genetic distance between individuals and populations, pp. 27-37 in Genetic Structure of Populations, edited by N.E. Morton. Univ. Press of Hawaii, Hawaii.

    Google Scholar 

  • Li, W.H. & M. Nei, 1975. Drift variances of heterozygosity and genetic distance in transient states. Genet. Res. Camb. 25: 220- 248.

    Google Scholar 

  • Li, W.H. & M. Tanimura, 1987. The molecular clock runs more slowly in man than in apes and monkeys. Nature 365: 93-96.

    Article  Google Scholar 

  • Lynch, M. & B.G. Milligan, 1994. Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3: 91-99.

    PubMed  CAS  Google Scholar 

  • Nauta, M.J. & F.J. Weissing, 1996. Constraints on allele size at microsatellite loci: Implications for genetic differentiation. Genetics 143: 1021-1032.

    PubMed  CAS  Google Scholar 

  • Nei, M., 1972. Genetic distance between populations. Amer. Natur. 106: 283-292.

    Article  Google Scholar 

  • Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.

    Google Scholar 

  • Nei, M. & A.K. Roychoudhury, 1974. Sampling variance of heterozygosity and genetic distance. Genetics 76: 379-390.

    PubMed  CAS  Google Scholar 

  • Nei, M., F. Tajima & Y. Tateno, 1983. Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J. Mol. Evol. 91: 153-170.

    Article  Google Scholar 

  • Nozawa, K., T. Shotake, Y. Ohkura & Y. Tanabe, 1977. Genetic variations within and between species of Asian macaques. Japan. J. Genet. 52: 15-30.

    Google Scholar 

  • Ohta, T. & M. Kimura, 1973. The model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a genetic population. Genet. Res. 22: 201-204.

    Article  Google Scholar 

  • Pamilo, P., 1990. Statistical tests of phenograms based on genetic distances. Evolution 44: 689-697.

    Article  Google Scholar 

  • Pritchard, J.K. & M.W. Feldman, 1996. Statistics for microsatellite variation based on coalescence. Theor. Popl. Biol. 50: 325-344.

    Article  CAS  Google Scholar 

  • Reynolds, J., B.S. Weir & C.C. Cockerham, 1983. Estimation of the coancestry coefficient: Basis for a short-term genetic distance. Genetics 105: 767-779.

    PubMed  Google Scholar 

  • Rogers, J.S., 1972. Measures of genetic similarity and genetic distance. Studies in Genetics VII (Univ. Texas Publ. 7213): 145-153.

  • Schmitt, J., D. Graur & J. Tomiuk, 1990. Phylogenetic relationships and rates of evolution in primates: Allozymic data from Catarrhine and Platyrrhine species. Primates 31: 95-108.

    Article  Google Scholar 

  • Schmitt, J. & J. Tomiuk, 1994. Protein polymorphism in three cercopithecid primate species and its application for conservation. Folia Primatol. 63: 123-130.

    Article  PubMed  CAS  Google Scholar 

  • Sanghvi, L.D., 1953. Comparison of genetical and morphological methods for a study of biological differences. Amer. J. Phys. Anthropol. 11: 385-404.

    Article  CAS  Google Scholar 

  • Shriver, M., L. Jin, E. Boerwinkle, R. Deka, R.E. Ferreli & R. Chakraborty, 1995. A novel measure of genetic distance for highly polymorphic tandem repeat loci. Mol. Biol. Evol. 12: 914-920.

    PubMed  CAS  Google Scholar 

  • Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457-462.

    PubMed  CAS  Google Scholar 

  • Takezaki, N. & M. Nei, 1996. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144: 389-399.

    PubMed  CAS  Google Scholar 

  • Tomiuk, J. & D. Graur, 1988. Nei's modified identity and distance measure and their sampling variances. Syst. Zool. 37: 156-162.

    Article  Google Scholar 

  • Tomiuk, J.& V. Loeschcke, 1991. A new measure of genetic identity between populations of sexual and asexual species. Evolution 45: 1685-1694.

    Article  Google Scholar 

  • Tomiuk, J. & V. Loeschcke, 1992. Evolution of parthenogenesis in the Otiorhynchus scaber complex. Heredity 68: 391-397.

    Google Scholar 

  • Tomiuk, J. & V. Loeschcke, 1995. Genetic identity combining mutation and drift. Heredity 74: 607-615.

    Google Scholar 

  • Tomiuk, J. & V. Loeschcke, 1996. A maximum-likelihood estimator of the genetic identity between polyploid species. J. Theor. Biol. 179: 51-54.

    Article  PubMed  CAS  Google Scholar 

  • Turner, T.R., 1981. Blood protein variation in a population of Ethiopian vervet monkeys (Cercopithecus aethiops aethiops). Amer. J. Phys. Anthropol. 55: 225-231.

    Article  Google Scholar 

  • Wright, S., 1931. Evolution in Mendelian populations. Genetics 16: 97-159.

    PubMed  CAS  Google Scholar 

  • Wright, S., 1951. The genetical structure ofpopulations. Ann. Eugen. 15: 323-354.

    Google Scholar 

  • Zhivotovsky, L.A. & M.W. Feldman, 1995. Microsatellite variability and genetic distances. Proc. Natl. Acad. Sci. USA 92: 11549- 11552.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomiuk, J., Guldbrandtsen, B. & Loeschcke, V. Population differentiation through mutation and drift – a comparison of genetic identity measures. Genetica 102, 545–558 (1998). https://doi.org/10.1023/A:1017080119277

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017080119277

Navigation