, 102:127 | Cite as

The fate of competing beneficial mutations in an asexual population

  • Philip J. Gerrish
  • Richard E. Lenski


In sexual populations, beneficial mutations that occur in different lineages may be recombined into a single lineage. In asexual populations, however, clones that carry such alternative beneficial mutations compete with one another and, thereby, interfere with the expected progression of a given mutation to fixation. From theoretical exploration of such ‘clonal interference’, we have derived (1) a fixation probability for beneficial mutations, (2) an expected substitution rate, (3) an expected coefficient of selection for realized substitutions, (4) an expected rate of fitness increase, (5) the probability that a beneficial mutation transiently achieves polymorphic frequency (≥ 1%), and (6) the probability that a beneficial mutation transiently achieves majority status. Based on (2) and (3), we were able to estimate the beneficial mutation rate and the distribution of mutational effects from changes in mean fitness in an evolving E. coli population.

asexual population dynamics beneficial mutations fixation probability clonal interference substitution rate 


  1. Barton, N.H., 1993. The probability of fixation of a favoured allele in a subdivided population. Genet. Res. 62: 149-157.Google Scholar
  2. Barton, N.H., 1994. The reduction in fixation probability caused by substitutions at linked loci. Genet. Res. 64: 199-208.CrossRefGoogle Scholar
  3. Barton, N.H., 1995. Linkage and the limits to natural selection. Genetics 140: 821-841.PubMedGoogle Scholar
  4. Crow, J.F. & M. Kimura, 1965. Evolution in sexual and asexual populations. Am. Nat. 99: 439-450.CrossRefGoogle Scholar
  5. Crow, J.F. & M. Kimura, 1970. An Introduction to Population Genetics Theory. New York: Harper & Row.Google Scholar
  6. Drake, J.W., 1991. A constant rate of spontaneous mutation in DNAbased microbes. Proc. Natl. Acad. Sci. USA 88: 7160-7164.PubMedCrossRefGoogle Scholar
  7. Elena, S.F., V.S. Cooper & R.E. Lenski, 1996. Punctuated evolution caused by selection of rare beneficial mutations. Science 272: 1802-1804.PubMedGoogle Scholar
  8. Elena, S.F., L. Ekunwe, N. Hajela, S.A. Oden & R.E. Lenski, 1998. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102/103: 349-358.PubMedCrossRefGoogle Scholar
  9. Ewens, W.J., 1969. Population Genetics. London: Methuen Press.Google Scholar
  10. Felsenstein, J., 1974. The evolutionary advantage of recombination. Genetics 78: 737-756.PubMedGoogle Scholar
  11. Felsenstein, J., 1988. Sex and the evolution of recombination, pp. 74-86 in The Evolution of Sex, edited by R.E. Michod and B.R. Levin. Sunderland, Mass.: Sinauer Associates.Google Scholar
  12. Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Oxford: Oxford Univ. Press.Google Scholar
  13. Gillespie, J.H., 1981. Mutation rate modification in a random environment. Evolution 35: 468-476.CrossRefGoogle Scholar
  14. Gillespie, J.H., 1991. The Causes of Molecular Evolution. Oxford: Oxford Univ. Press.Google Scholar
  15. Haigh, J., 1978. The accumulation of deleterious genes in a population - Muller's ratchet. Theor. Pop. Biol. 14: 251-267.CrossRefGoogle Scholar
  16. Haldane, J.B.S., 1927. The mathematical theory of natural and artificial selection. Proc. Camb. Phil. Soc. 23: 838-844.CrossRefGoogle Scholar
  17. Holmes, E.C., L.Q. Zhang, P. Simmonds, C.A. Ludlam & A.J.L. Brown, 1992. Convergent and divergent sequence evolution in the surface envelope glycoprotein of human immunodeficiency virus type 1 within a single infected patient. Proc. Natl. Acad. Sci. USA 89: 4835-4839.PubMedCrossRefGoogle Scholar
  18. Ishii, K., H. Matsuda, Y. Iwasa & A. Sasaki, 1989. Evolutionarily stable mutation rate in a periodically changing environment. Genetics 121: 163-174.PubMedGoogle Scholar
  19. Keightley, P.D., 1991. Genetic variance and fixation probabilities at quantitative trait loci in mutationselection balance. Genet. Res. 58: 139-144.Google Scholar
  20. Kimura, M., 1979. Model of effectively neutral mutations in which selective constraint is incorporated. Proc. Natl. Acad. Sci. USA 76: 3440-3444.PubMedCrossRefGoogle Scholar
  21. Leigh, E.G., 1970. Natural selection and mutability. Am. Nat. 104: 301-305.CrossRefGoogle Scholar
  22. Lenski, R.E & M. Travisano, 1994. Dynamics of adaptation and diversification: a 10,000generation experiment with bacterial populations. Proc. Natl. Acad. Sci. USA 91: 6808-6814.PubMedCrossRefGoogle Scholar
  23. Lenski, R.E., M.R. Rose, S.C. Simpson & S.C. Tadler, 1991. Longterm experimental evolution in Escherichia coli. I. Adaptation and divergence during 2000 generations. Am. Nat. 138: 1315- 1341.CrossRefGoogle Scholar
  24. Manning, J.T. & D.J. Thompson, 1984. Muller's ratchet accumulation of favourable mutations. Acta Biotheor. 33: 219-225.CrossRefGoogle Scholar
  25. Maynard Smith, J., 1968. Evolution in sexual and asexual populations. Am. Nat. 102: 469-473.CrossRefGoogle Scholar
  26. Muller, H.J., 1932. Some genetic aspects of sex. Am. Nat. 8: 118- 138.CrossRefGoogle Scholar
  27. Muller, H.J., 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2-9.Google Scholar
  28. Otto, S.P. & M.C. Whitlock, 1997. The probability of fixation in populations of changing size. Genetics 146: 723-733.PubMedGoogle Scholar
  29. Pamilo, P., M. Nei & W. Li, 1987. Accumulation of mutations in sexual and asexual populations. Genet. Res. 49: 135-146.PubMedGoogle Scholar
  30. Peck, J.R., 1994. A ruby in the rubbish: beneficial mutations, deleterious mutations and the evolution of sex. Genetics 137: 597-606.PubMedGoogle Scholar
  31. Peck, J.R., G. Barreau & S.C. Heath, 1997. Imperfect genes, Fisherian mutation and the evolution of sex. Genetics 145: 1171-1199.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Philip J. Gerrish
    • 1
  • Richard E. Lenski
    • 1
  1. 1.Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations