Advertisement

Hydrobiologia

, Volume 371, Issue 0, pp 123–132 | Cite as

New approaches to the behavioural ecology of decapod crustaceans using telemetry and electronic tags

  • Juan Freire
  • Eduardo González-Gurriarán
Article

Abstract

Decapod crustaceans have complex life histories and behaviour in aspects such as foraging, mating and reproduction, moulting and growth, habitat selection and migration. New technologies have enabled us to use an individual, field-based approach to analyze these problems, although they have been less developed in decapods than in marine vertebrates. These new possibilities are discussed here mainly from a biological point of view. There is a brief review of previous applications of telemetry to analyze habitat selection, foraging behaviour, energetics, moulting site selection and migrations in decapods, and two case studies are discussed in more detail. The first one refers to the study of differences in habitat use and movement patterns in juveniles and adults of coastal species that show ontogenetic habitat shifts, related to differences in selective pressures affecting both life history stages (predation risk, and growth and reproduction optimization). The second case study is dedicated to the migratory patterns in spider crabs combining telemetry and electronic tags. Operational limitations in tracking make it impossible to get detailed information on movement patterns during migration, which in turn involve an important bathymetric gradient and a change in the oceanographic environment (mainly temperature). Monitoring depth and temperature in the immediate habitat of the animals, using electronic data storage tags recovered by the fishery, allow for movement patterns to be modeled using supplementary information on the topography and hydrography of the study area. This approach is being tested using both telemetry and electronic tags simultaneously.

behavioural ecology crustaceans decapods electronictags migrations telemetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, G. P. & B. H. Holford, 1995. A computer simulation model for predicting rates and scales of movement of demersal fish on the European continental shelf. ICES J. mar. Sci. 52: 981–990.CrossRefGoogle Scholar
  2. Bjordal, A., A. Engas, A. V. Soldal & T. J. Ovredal, 1993. A new radio link telemetry positioning system. Experiences from tracking of fish and crustaceans. ICES, Fish Capture Comm., C. M. 1993/B:23: 1–6.Google Scholar
  3. Bottoms, A. & J. Marlow, 1979. A new ultrasonic tag for the telemetry of physiological functions from aquatic animals. Mar. Biol. 50: 127–130.CrossRefGoogle Scholar
  4. Butler, P. J., 1989. Telemetric recording of physiological data from free-living animals. In P. J. Grubb & J. B. Whittaker (eds), Toward a More Exact Ecology, Blackwell Scientific Publications, Oxford: 63–84.Google Scholar
  5. Chapman, C. J., A. D. Johnstone & A. L. Rice, 1975. The behaviour and ecology of the Norway lobster, Nephrops norvegicus (L.). In H. Barnes (ed.), Proceedings of the 9th European Marine Biology Symposium, Aberdeen University Press, Aberdeen: 59–74.Google Scholar
  6. Claireaux, G., D. M. Webber, S. R. Kerr & R. G. Boutilier, 1995a. Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating temperature conditions. J. exp. Biol. 198: 49–60.PubMedGoogle Scholar
  7. Claireaux, G., D. M. Webber, S. R. Kerr & R. G. Boutilier, 1995b. Physiology and behaviour of free-swimming Atlantic cod (Gadus morhua) facing fluctuating salinity and oxygenation conditions. J. exp. Biol. 198: 61–69.PubMedGoogle Scholar
  8. Collins, K. J. & A. C. Jensen, 1992. Acoustic tagging of lobsters on the Poole Bay artificial reef. In I. G. Priede & S. M. Swift (eds), Wildlife Telemetry. Remote Monitoring and Tracking of Animals, Ellis Horword, Chichester: 354–358.Google Scholar
  9. Collins, K. J., E. K. Free, A. C. Jensen & S. Thompson, 1993. Analysis of Poole Bay, U. K. lobster data. ICES, Shellfish Committee C. M. 1993/K:48: 1–8.Google Scholar
  10. Emery, L. & R. Wydoski, 1987. Marking and tagging of aquatic animals: an indexed bibliography. U. S. Fish Wildl. Serv., Resour. Publ. 165: 1–57.Google Scholar
  11. Fitz, H. C. & R. G. Wiegert, 1991. Tagging juvenile blue crabs, Callinectes sapidus, with microwire tags: Retention, survival, and growth through multiple molts. J. Crust. Biol. 11: 229–235.CrossRefGoogle Scholar
  12. González-Gurriarán, E., L. Fernández, J. Freire, R. Muiño & J. Parapar, 1993. Reproduction of the spider crab Maja squinado (Brachyura: Majidae) in the southern Galician coast (NW Spain). ICES, Shell. Comm. C. M., 1993/K:19: 1–15.Google Scholar
  13. González-Gurriarán, E., L. Fernández, J. Freire & R. Muiño, 1998. Mating and role of seminal receptacles in the reproductive biology of the spider crab, Maja squinado (Decapoda: Majidae). J. exp. mar. Biol. Ecol. 220: 269–285.CrossRefGoogle Scholar
  14. González-Gurriarán, E. & J. Freire, 1994. Movement patterns and habitat utilization in the spider crab Maja squinado (Herbst) (Decapoda, Majidae) measured by ultrasonic telemetry. J. exp. mar. Biol. Ecol. 184: 269–291.CrossRefGoogle Scholar
  15. González-Gurriarán, E., J. Freire, J. Parapar, M. P. Sampedro & M. Urcera, 1995. Growth at moult and moulting seasonality of the spider crab, Maja squinado (Herbst) (Decapoda: Majidae) in experimental conditions: implications for juvenile life history. J. exp. mar. Biol. Ecol. 189: 183–203.CrossRefGoogle Scholar
  16. Gunn, J., T. Polacheck, T. Davis, M. Sherlock & A. Betlehem, 1994. The development and use of archival tags for studying the migration, behaviour and physiology of southern bluefin tuna, with an assessment of the potential for transfer of technology to groudfish research. ICES C. M. 1994/Mini:2.1: 1–23.Google Scholar
  17. Hall, S. J., D. J. Basford, M. R. Robertson, D. G. Rafaelli & I. Tuck, 1991. Patterns of recolonisation and the importance of pit-digging by the crab Cancer pagurus in a subtidal sand habitat. Mar. Ecol. Prog. Ser. 72: 93–102.Google Scholar
  18. Hawkins, A. D. & G. G. Urquhart, 1983. Tracking fish at sea. In A. G. MacDonald & I. G. Priede (eds), Experimental Biology at Sea, Academic Press, London: 103–166.Google Scholar
  19. Hill, B. J., 1978. Activity, track and speed of movement of the crab Scylla serrata in an estuary. Mar. Biol. 47: 135–141.CrossRefGoogle Scholar
  20. Hines, A. H. & G. M. Ruiz, 1995. Temporal variation in juvenile blue crab mortality: nearshore shallows and cannibalism in Chesapeake Bay. Bull. Mar. Sci. 57: 884–901.Google Scholar
  21. Hines, A. H., T. G. Wolcott, E. González-Gurriarán, J. L. González-Escalante & J. Freire, 1995. Movement patterns and migrations in crabs: telemetry of juvenile and adult behaviour in Callinectes sapidus and Maja squinado. J. mar. biol. Ass. U. K. 75: 27–42.CrossRefGoogle Scholar
  22. Hurley, G. V., R. W. Elner, D. M. Taylor & R. F. J. Bailey, 1990. Evaluation of snow crab tags retainable through molting. Am. Fish. Soc. Symp. 7: 84–93.Google Scholar
  23. Jernakoff, P., 1987a. An electromagnetic tracking system for use in shallow water. J. exp. mar. Biol. Ecol. 113: 1–8.CrossRefGoogle Scholar
  24. Jernakoff, P., 1987b. Foraging patterns of juvenile rock lobsters Panulirus cygnus George. J. exp. mar. Biol. Ecol. 113: 125–144.CrossRefGoogle Scholar
  25. Jernakoff, P., B. F. Phillips & R. A. Maller, 1987. A quantitative study of the nocturnal foraging distances of the western rock lobster Panulirus cygnus George. J. exp. mar. Biol. Ecol. 113: 9–21.CrossRefGoogle Scholar
  26. Karnofsky, E. B., J. Atema & R. H. Elgin, 1989a. Field observations of social behavior, shelter use, and foraginig in the lobster, Homarus americanus. Biol. Bull. 176: 239–246.Google Scholar
  27. Karnofsky, E. B., J. Atema & R. H. Elgin, 1989b. Natural dynamics of population structure and habitat use of the lobster, Homarus americanus, in a shallow cove. Biol. Bull. 176: 247–256.Google Scholar
  28. Kasello, P. A., A. H. Weatherley, J. Lotimer & M. D. Farina, 1992. A biotelemetry system recording fish activity. J. Fish Biol. 40: 165–179.CrossRefGoogle Scholar
  29. Lucas, M. C., A. D. F. Johnstone & I. G. Priede, 1993. Use of physiological telemetry as a method of estimating metabolism in the natural environment. Trans. am. Fish. Soc. 122: 822–833.CrossRefGoogle Scholar
  30. Maynard, D. R. & D. M. Webber, 1987. Monitoring the movements of snow crab (Chionoecetes opilio) with ultrasonic telemetry. In Proceedings Oceans'87. The ocean – an international workplace. Volume 3: Marine Sciences, Fifth working symposium on oceanographic data systems and underwater work systems: 962–966.Google Scholar
  31. Maynard, D. M., 1991. Biophysical ecology of snow crab Chionoecetes opilio; relating respiration rates and walking speeds from the laboratory to fields observations. Biology Department, Dalhouisie University, Halifax, Nova Scotia, 89 pp.Google Scholar
  32. Metcalfe, J. D., G. P. Arnold & B. H. Holford, 1994. The migratory behaviour of plaice in the North Sea as revealed by data storage tags. ICES C. M. 1994/Mini:1.1: 1–13.Google Scholar
  33. Monan, G. E. & D. L. Thorne, 1973. Sonic tags attached to Alaska king crab. Mar. Fish. Rev. 35: 18–21.Google Scholar
  34. Nye, L. A., 1989. Variation in feeding behavior of blue crabs (Callinectes sapidus Rathbun) measured by ultrasonic telemetry. Department of Marine, Earth and Atmospheric Sciences, University of North Carolina, Raleigh, 82 pp.Google Scholar
  35. O'Dor, R. K., D. M. Webber & F. M. Voegeli, 1988. A multiple buoy acoustic-radio telemetry system for automated positioning and telemetry of physical and physiological data. In C. J. Amlaner (ed.), Biotelemetry X, Proc. 10th Int. Symp. Biotelemetry, The University of Arkansas Press: 444–452.Google Scholar
  36. O'Dor, R. K. & D. M. Webber, 1991. Ultrasonic telemetry. The Lobster Newsletter 4: 1–2.Google Scholar
  37. O'Dor, R. K., J. Forsythe, D. M. Webber, J. Wells & M. J. Wells, 1993. Activity levels of Nautilus in the wild. Nature 362: 626–628.CrossRefGoogle Scholar
  38. O'Dor, R. K., J. A. Hoar, D. M. Webber, F. G. Carey, S. Tanaka, H. R. Martins & F. M. Porteiro, 1994. Squid (Loligo forbesi) performance and metabolic rates in nature. Mar. Freshwat. Behav. Physiol. 25: 163–177.Google Scholar
  39. Phillips, B. F., L. M. Joll & D. C. Ramm, 1984. An electromagnetic tracking system for studying the movements of rock (spiny) lobsters. J. exp. mar. Biol. Ecol. 79: 9–18.CrossRefGoogle Scholar
  40. Priede, I. G. & S. M. Swift (eds), 1992. Wildlife Telemetry. Remote Monitoring and Tracking of Animals. Ellis Horwood, Chichester.Google Scholar
  41. Shelton, P. M. J. & C. J. Chapman, 1987. A living tag for recording moult histories in crustaceans. J. Cons. int. Explor. Mer 43: 209–215.Google Scholar
  42. Shirley, M. A. & T. G. Wolcott, 1991. A telemetric study of microhabitat selection by premolt and molting blue crabs, Callinectes sapidus (Rathbun), within a subestuary of the Pamlico River, North Carolina. Mar. Behav. Physiol. 19: 133–148.CrossRefGoogle Scholar
  43. Skaaja, K., A. Fernö, S. Løkkeborg & E. K. Haugland, 1998. Basic movement pattern and chemo-oriented search towards baited pots in edible crab (Cancer pagurus L.). Hydrobiologia 371/372: 143–153.CrossRefGoogle Scholar
  44. Smith, B. D. & G. S. Jamieson, 1991. Movement, spatial distribution, and mortality of male and female Dungeness crab Cancer magister near Tofino, British Columbia. Fish. Bull. 89: 137–148.Google Scholar
  45. Smith, I. P., K. J. Collins & A. C. Jensen, 1998. Electromagnetic telemetry of lobster (Homarus gammarus (L.)) movements and activity: preliminary results. Hydrobiologia 371/372: 133–141.CrossRefGoogle Scholar
  46. Stasko, A. B. & D. G. Pincock, 1978. Review of underwater biotelemetry, with emphasis on ultrasonic techniques. J. Fish. Res. Bd Can. 34: 1261–1285.Google Scholar
  47. Stone, R. P., C. E. O'Clair & T. C. Shirley, 1992. Seasonal migration and distribution of female red king crabs in a southeast Alaskan estuary. J. Crust. Biol. 12: 546–560.CrossRefGoogle Scholar
  48. Stone, R. P., C. E. O'Clair & T. C. Shirley, 1993. Aggregating behavior of ovigerous female red king crab, Paralithodes camtschaticus, in Auke Bay, Alaska. Can. J. Fish. Aquat. Sci. 50: 750–758.CrossRefGoogle Scholar
  49. Sturlaugsson, J., 1995. Migration study of Atlantic salmon (Salmo salar L.) in coastal waters W-Iceland-Depth movements and se temperatures recorded at migration routes by data storage tags. ICES, Anad. Catad. Fish. Comm. C. M. 1995/M:17: 1–13.Google Scholar
  50. Thorsteinsson, V., 1995. Tagging experiments using conventional tags and electronic data storage tags for the observations of migration, homing and habitat choice in the Icelandic spawning stock of cod. ICES, Fish. Capt. Comm. C. M. 1995/B:19: 1–16.Google Scholar
  51. Urquhart, G. G. & G. W. Smith, 1992. Recent developments of a fixed hydrophone array system for monitoring movements of aquatic animals. In I. G. Priede & S. M. Swift (eds), Wildlife Telemetry. Remote Monitoring and Tracking of Animals, Ellis Horword, Chichester: 342–353.Google Scholar
  52. Urquhart, G. G. & P. A. M. Stewart, 1993. A review of techniques for the observation of fish behaviour in the sea. ICES mar. Sci. Symp. 196: 135–139.Google Scholar
  53. Van Montfrans, J., J. Capelli, R. J. Orth & C. H. Ryer, 1986. Use of microwire tags for tagging juvenile crabs (Callinectes sapidus Rathbun). J. Crust. Biol. 6: 370–376.CrossRefGoogle Scholar
  54. Van Montfrans, J., C. H. Ryer & R. J. Orth, 1991. Population dynamics of the blue crabs Callinectes sapidus Rathbun in a lower Chesapeake Bay tidal marsh creek. J. exp. mar. Biol. Ecol. 153: 1–14.CrossRefGoogle Scholar
  55. Wolcott, T. G., 1980a. Heart-rate telemetry using micropower integrated circuits. In C. J. Amlaner & D. W. MacDonald (eds), Handbook for Biomedical Telemetry and Radio Tracking, Pergamon Press, Oxford: 279–286.Google Scholar
  56. Wolcott, T. G., 1980b. Optical and radio-optical techniques for tracking nocturnal animals. In C. J. Amlaner & D. W. Mac-Donald (eds), Handbook for Biomedical Telemetry and Radio Tracking, Pergamon Press, Oxford: 333–337.Google Scholar
  57. Wolcott, T. G., 1995. New options in physiological and behavioural ecology through multichannel telemetry. J. exp. mar. Biol. Ecol. 193: 257–275.CrossRefGoogle Scholar
  58. Wolcott, T. G. & A. H. Hines, 1989a. Ultrasonic telemetry transmitters for behavioral studies on free-ranging blue crabs. In C. J. Amlaner (ed.), Biotelemetry X, Proc. 10th Int. Symp. Biotelemetry, The University of Arkansas Press, Fayetteville: 285–295.Google Scholar
  59. Wolcott, T. G. & A. H. Hines, 1989b. Ultrasonic telemetry of muscle activity from free-ranging marine animals: A new method for studying foraging by blue crabs (Callinectes sapidus). Biol. Bull. 176: 50–56.Google Scholar
  60. Wolcott, T. G. & A. H. Hines, 1990. Ultrasonic telemetry of small-scale movements and microhabitat selection by molting blue crabs (Callinectes sapidus). Bull. Mar. Sci. 46: 83–94.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Juan Freire
  • Eduardo González-Gurriarán

There are no affiliations available

Personalised recommendations