Skip to main content
Log in

Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

I provide a conceptual landscape of attributes of phytoplankton related to trophic gradients, by reviewing 69 papers and books on eutrophication, with special reference to the ecology of the phytoplankton. Forty-eight ecological variables such as total phosphorus and Chl-a, are used, each related to the trophic gradient measured. They are subdivided in structural features of the phytoplankton, functional or dynamic features, and other relevant properties of the plankton community. Only twelve of the forty-eight variables are statistically related to trophic gradient. In most cases, variability across a trophic gradient is only nominally described. Less attention is given to functional, structural or dynamic variables. Some associations occur because the variables are interrelated, for example, photosynthesis and Chl-a, or because the mathematical comparison is between a whole factor and a part of it. Many important environmental features which trigger or affect phytoplankton behaviour are independent of trophic state. Therefore, trophic states might be viewed as a multi-dimensional space, the axes of which are defined by the various independent variables, and not merely a simple gradient of fertility. The alternative approaches to the search for pattern are either the single global pattern (which seeks to explain the ecological behaviour of phytoplankton in all freshwater systems) or multiple local patterns (where only a small set of specific variables is solved for each question and system). If the ultimate goal is a paradigm of phytoplankton dynamics, biomass models, and tools for the prediction of species composition, phytoplankton ecologists should adopt the theories of nonlinear dynamic complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Cobelas, M. & B. Jacobsen, 1992. Hypertrophic phytoplankton: an overview. Freshwat. Forum 2: 184–199.

    Google Scholar 

  • Alvarez-Cobelas, M. & C. Rojo, 1994a. Spatial, seasonal and long-term variability of phytoplankton photosynthesis in lakes. J. Plankton Res. 16: 1691–1716.

    Google Scholar 

  • Alvarez-Cobelas, M. & C. Rojo, 1994b. Factors influencing the share of planktic diatoms in lakes. Arch. Hydrobiol. Algol. Stud. 74: 73–104.

    Google Scholar 

  • Anon, 1990. Toxic blue green algae. National Rivers Authority, Peterborough, England, 128 pp.

  • Arnqvist, G. & D. Wooster, 1995. Meta-analysis: synthesizing research findings in ecology and evolution. TREE 10: 236–240.

    Google Scholar 

  • Baines, S & M. L. Pace, 1994. Relationships between suspended particulate matter and sinking flux along a trophic gradient and implications for the fate of planktonic primary production. Can. J. Fish. Aquat. Sci. 51: 25–36.

    Google Scholar 

  • Baines, S. B., M. L. Pace & D. M. Karl, 1994. Why does the relationship between sinking flux and planktonic primary production differ between lakes and oceans? Limnol. Oceanogr. 39: 213– 226.

    Article  Google Scholar 

  • Bloesch, J. & U. Uehlinger, 1990. Epilimnetic carbon flux turnover of different particle size classes in oligo-mesotrophic Lake Lucerne, Switzerland. Arch. Hydrobiol. 118: 403–419.

    CAS  Google Scholar 

  • Blomqvist, P., A. Pettersson & P. Hyenstrand, 1994. Ammonium-nitrogen: A key regulatory factor causing dominance of nonnitrogen-fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164.

    CAS  Google Scholar 

  • Canfield, D. E., E. Philips & C. M. Duarte, 1989. Factors influencing the abundance of blue-green algae in Florida Lakes. Can. J. Fish. Aquat. Sci. 46: 1232–1237.

    Google Scholar 

  • Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361–369.

    CAS  Google Scholar 

  • Carney, H. J. & J. J. Elser, 1990. Strength of zooplanktonphytoplankton coupling in relation to lake trophic state. In M. M. Tilzer & C. Serruya (eds), Large Lakes. Springer, Berlin: 615–631.

    Google Scholar 

  • Carpenter, S. R., K. L. Cottingham & D. E. Schindler, 1992. Biotic feedbacks in lake phosphorus cycles. TREE 7: 332–335.

    Google Scholar 

  • Carpenter, S. R. & J. F. Kitchell (eds), 1993. The trophic cascade in lakes. Cambridge University Press, Cambridge, 383 pp.

    Google Scholar 

  • Carrillo, P., I. Reche, P. Sanchez-Castillo & L. Cruz-Pizarro, 1995. Direct and indirect effects of grazing on the phytoplankton seasonal succession in an oligotrophic lake. J. Plankton Res. 17: 1363–1379.

    Google Scholar 

  • Chow-Fraser, P., D. O. Trew, D. Findlay & M. Stainton, 1994. A test of hypotheses to explain the sigmoidal relationship between total phosphorus and Chlorophyll a concentrations in Canadian lakes. Can. J. Fish. Aquat. Sci. 51: 2052–2065.

    Google Scholar 

  • De Angelis, D. L., 1992. Dynamics of nutrient cycling and food webs. Chapman & Hall, 270 pp.

  • Dillon P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767–773.

    CAS  Google Scholar 

  • Dillon, P. J., K.H. Nicholls, B.A. Locke, E. de Grosbois & N. D. Yan, 1988. Phosphorus-phytoplankton relationships in nutrient-poor soft-water lakes in Canada. Verh. int. Ver. Limnol. 23: 258–264.

    Google Scholar 

  • Elser, J. J., H. J. Carney & C. R. Goldman, 1990.The zooplanktonphytoplankton interface in lakes of contrasting trophic status: an experimental comparison. Hydrobiologia 200/201: 69–82.

    Google Scholar 

  • Elser, J. J. & N. B. George, 1993. The stoichiometry of N and P in the pelagic zone of Castle Lake, California. J. Plankton Res. 15: 977–992.

    CAS  Google Scholar 

  • Findlay, D. L. & S. E. M. Kasian, 1987. Phytoplankton community responses to nutrient addition in Lake 226, Experimental Lakes Area, Northwestern Ontario. Can. J. Fish. Aquat. Sci. 44: 35–46.

    CAS  Google Scholar 

  • Gaedke, U.& A. Schweizer, 1993. The first decade of oligotrophication in Lake Constance. I. The response of phytoplankton biomass and cell size. Oecologia 93: 268–275.

    Article  Google Scholar 

  • George, D. G. & D. H. Jones, 1987. Catchment effects on the horizontal distribution of phytoplankton in five of Scotland's largest freshwater lochs. J. Ecol. 75: 43–59.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1975. Effect of zooplankton grazing on photosynthetic activity and composition of phytoplankton. Verh. int. Ver. Limnol. 19: 1490–1497.

    Google Scholar 

  • Golterman, H. L., 1988. Chlorophyll-Phosphate relationships, a tool for water management. In F. E. Round (ed.), Algae and the aquatic environment. Biopress Ltd., Bristol: 205–224.

    Google Scholar 

  • Harper, D., 1992. Eutrophication of freshwaters. Chapman & Hall. London, 327 pp.

    Google Scholar 

  • Harris, G. P., 1986. Phytoplankton ecology. Structure, function and fluctuation. Chapman and Hall, London, 384 pp.

    Google Scholar 

  • Harris, G. P., 1994. Pattern, process and prediction in aquatic ecology. A limnological view of some general ecological problems. Freshwat. Biol. 32: 143–160.

    Article  Google Scholar 

  • Hutchinson, G. E., 1961. The paradox of the plankton. Am. Nat. 95: 137–145.

    Article  Google Scholar 

  • Kalff, J., 1991. The utility of latitude and other environmental factors as predictors of nutrients, biomass and production in lakes worldwide: problems and alternatives. Verh. int. Ver. Limnol. 24: 1235–1239.

    Google Scholar 

  • Kalff, J. & R. Knoechel, 1978. Phytoplankton and their dynamics in oligotrophic and eutrophic lakes. Ann. Rev. Ecol. Syst. 9: 475– 495.

    Article  Google Scholar 

  • Kalff, J. & S. Watson, 1986. Phytoplankton and its dynamics in two tropical lakes: a tropical and temperate zone comparison. Hydrobiologia 138: 161–176.

    Article  Google Scholar 

  • Levins, R., 1984. The strategy of model building in population biology. In E. Sobe (ed.), Conceptual Issues in Evolutionary Biology. The MIT Press, Cambridge: 18–27.

    Google Scholar 

  • Lund, J. W. G., 1964. Primary production and periodicity of phytoplankton. Verh. int. Ver. Limnol. 15: 37–56.

    Google Scholar 

  • Makulla, A. & U. Sommer, 1993. Relationships between resource ratios and phytoplankton species composition during spring in five north German lakes. Limnol. Oceanogr. 38: 846–856.

    Article  CAS  Google Scholar 

  • Marshall, C. T. & R. H. Peters, 1989. General patterns in the seasonal development of chlorophyll a for temperate lakes. Limnol. Oceanogr. 34: 856–867.

    CAS  Google Scholar 

  • McCauley, E. & J. Kalff, 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J. Fish. Aquat. Sci. 38: 458–463.

    Google Scholar 

  • Moss, B., 1973. The influence of environmental factors on the distribution of freshwater algae: an experimental study. IV. Growth of test species in natural lake waters and conclusions. J. Ecol. 61: 193–211.

    Article  CAS  Google Scholar 

  • Moss, B., 1980. Ecology of fresh waters. Blackwell Scientific Publications. Oxford, 332 pp.

    Google Scholar 

  • Munawar, M. & I. F. Munawar, 1986. The seasonality of phytoplankton in the North American Great Lakes, a comparative synthesis. Hydrobiologia 138: 85–115.

    Article  Google Scholar 

  • Odum, E. P., 1985. Trends expected in stressed ecosystems. BioScience 35: 419–422.

    Article  Google Scholar 

  • OECD, 1982. Eutrophication of waters. Monitoring, assessment and control. OECD, Paris, 153 pp.

    Google Scholar 

  • Pahl-Wostl, C., 1995. The dynamic nature of ecosystems. Chaos and order entwined. John Wiley & Sons, Chichester, 267 pp.

    Google Scholar 

  • Pimm, S. L., 1991. The balance of nature? University of Chicago Press, Chicago, Illinois, 434 pp.

    Google Scholar 

  • Prairie, Y. T., C. M. Duarte & J. Kalff, 1989. Unifying nutrientchlorophyll relationships in lakes. Can. J. Fish. Aquat. Sci. 46: 1176–1182.

    CAS  Google Scholar 

  • Rawson, D. S., 1956. Algal indicators of trophic lake types. Limnol. Oceanogr. 1: 18–25.

    Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarctic Ecol. 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1984a. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Article  Google Scholar 

  • Reynolds, C. S., 1984b. The ecology of freshwater phytoplankton. Cambridge Univ. Press, New York, 384 pp.

    Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptative strategies of freshwater phytoplankton. In C. D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, Cambridge: 388–433.

    Google Scholar 

  • Reynolds, C. S., 1992. Eutrophication and the management of planktonic algae: what Vollenweider couldn't tell us. In D.W. Sutcliffe & J. G. Jones (eds), Eutrophication: research and application to water supply. Freshwater Biological Association, Ambleside: 4–29.

  • Reynolds, C. S. & E. G. Bellinger, 1992. Patterns of abundance and dominance of the phytoplanton of Rostherne Mere, England: evidence from an 18year data set. Aquat. Sci. 54: 1015–1621.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibrations. Schweiz. Z. Hydrol. 43: 34–62.

    Google Scholar 

  • Sas, H. (ed.), 1989. Lake restoration by reduction of nutrient loading. Academia Verlag, Sankt Agustin, 497 pp.

  • Scheffer, M., S. M. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275–278.

    Google Scholar 

  • Schindler, D.W., 1990. Experimental perturbations of whole lakes as test of hypotheses concerning ecosystem structure and function. Oikos 57: 25–41.

    Google Scholar 

  • Schindler, D.W. & E. J. Fee, 1974. Experimental lakes area: whole-lake experiments in eutrophication. J. Fish. Res. Bd Can. 31: 937–953.

    Google Scholar 

  • Seip, K. L., H. Sas & S. Vermij, 1992. Changes in Secchi disk depth with eutrophication. Arch. Hydrobiol. 124: 149–165.

    Google Scholar 

  • Seip, K. L. & C. S. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limnol. Oceanogr. 40: 589–597.

    Article  Google Scholar 

  • Smith, V. H., 1979. Nutrient dependence of primary productivity in lakes. Limnol.Oceanogr. 24: 1051–1064.

    Article  Google Scholar 

  • Smith, V. H., 1985. Predictive models for the biomass of blue-green algae in lakes. Water resour. Bull. 21: 433–439.

    CAS  Google Scholar 

  • Smith, V. H., 1986. Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can. J. Fish. Aquat. Sci. 43: 148–153.

    Article  Google Scholar 

  • Smith, V. H., 1990. Phytoplankton responses to eutrophication in inland waters. In I. Akatsuka (ed.), Introduction to Applied Phycology. Academic Publishing, The Hague: 231–249.

    Google Scholar 

  • Smith, V. H., E. Willén & B. Karlsson, 1987. Predicting the summer peak biomass of four species of blue-green algae (Cyanophyta/Cyanobacteria) in Swedish lakes. Water resour. Bull. 23: 397– 402.

    Google Scholar 

  • Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–7.

    Article  Google Scholar 

  • Sommer, U, U. Gaedke & A. Schweizer, 1993. The first decade of oligotrophication of Lake Constance. II. The response of phytoplankton taxonomic composition. Oecologia 93: 276–284.

    Article  Google Scholar 

  • Sprules, W. C., J. M. Casselman & B. J. Shuter, 1983. Size distribution of pelagic particles in lakes. Can. J. Fish. Aquat. Sci. 40: 1761–1769.

    Google Scholar 

  • Sprules, W. G. & M. Munawar, 1986. Plankton size spectra in relation to ecosystem productivity, size, and perturbation. Can. J. Fish. Aquat. Sci. 43: 1789–1794.

    Article  Google Scholar 

  • Steinberg, C. E. W. & H. M. Hartmann, 1988. Planktonic bloomforming Cyanobacteria and the eutrophication of lakes and rivers. Freshwat. Biol. 20: 279–287.

    Article  Google Scholar 

  • Stockner, J. G., 1991. Autotrophic picoplankton in freshwater ecosystems: the viewfrom the summit. Int. Revue ges. Hydrobiol. 76: 483–492.

    Google Scholar 

  • Takamura, N. & Y. Nojiri, 1994. Picoplankton biomass in relation to lake trophic state and the TN:TP ratio of lake water in Japan. J. Phycol. 30: 439–444.

    Article  CAS  Google Scholar 

  • Tilman, D., 1982. Resource competition and community structure. Princeton Univ. Press, Princeton, 296 pp.

    Google Scholar 

  • Trifonova, I. S., 1988. Oligotrophic-eutrophic succession of lake phytoplankton. In F. E. Round (ed.), Algae and the aquatic environment. Biopress Ltd., Bristol: 107–124.

    Google Scholar 

  • Trifonova, I. S., 1989. Changes in community structure and productivity of phytoplankton as indicators of lake and reservoir eutrophication. Arch. Hydrobiol. Beih. 33: 363–371.

    Google Scholar 

  • Tsuda, R., M. Kumagai & Y. Kakui, 1992. Spatial changes of phytoplanktonic size spectra in Lake Biwa. Hydrobiologia 243/244: 137–140.

    Article  Google Scholar 

  • von Pavoni, M., 1963. Die Bedeutung des Nannoplanktons im Vergleich zum Netzplankton. Schweiz. Z. Hydrol. 25: 219–341.

    Google Scholar 

  • Watson, S., E. McCauley & J. A. Downing, 1992. Sigmoid relatioships between Phophorus, Algal Biomass, and Algal Community Structure. Can. J. Fish. Aquat. Sci. 49: 2605–2610.

    Article  CAS  Google Scholar 

  • White, E., G. Payne & S. Pickmere, 1988. A limitation to the usefulness of chlorophyll as a biomass indicator in eutrophication studies. Verh. int. Ver. Limnol. 23: 598–601.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojo, C. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps. Hydrobiologia 369, 1–9 (1998). https://doi.org/10.1023/A:1017066330953

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017066330953

Navigation