Skip to main content

What factors influence the species composition of phytoplankton in lakes of different trophic status?

Abstract

The paper articulates some present concepts relating to the selection of phytoplankton along trophic gradients. Concerns over lake eutrophication have heightened the importance of nutrients but it is not obvious that interspecific differences in the nutrient requirements of algae genuinely segregate species except under chronic deficiencies. The selectivity supposedly generated by altered resource ratios is re-examined. It is argued that ratios explain very little of the distribution of species with respect to trophy. However, changing nutrient loading does have consequential impacts on the availability of other requirements including light and carbon dioxide. It is argued that the trophic spectrum is not a single dimension of a single factor but, rather, a template of factors covarying in consequence of the larger levels of biomass that are supported, and which weight in favour of the growth and survival prospects of particular kinds of planktonic algae. The trophic spectrum is a probabalistic outcome of several dimensions of variability.

This is a preview of subscription content, access via your institution.

References

  • Blomqvist, P., A. Petterson & P. Hyenstrand, 1994. Ammoniumnitrogen: a key regulatory factor causing dominance of nonnitrogen fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132: 141–164.

    CAS  Google Scholar 

  • Burns, C. W., 1969. Relation between filtering rate, temperature and body size in four species of Daphnia. Limnol. Oceanogr. 14: 693–700.

    Google Scholar 

  • Ferguson, A. J. D., J. M. Thompson & C. S. Reynolds, 1982. Structure and dynamics of zooplankton communities maintained in closed systems, with special reference to the food supply. J. Plankton Res. 4: 523–543.

    Google Scholar 

  • George, D. G., D. P. Hewitt, J. W. G. Lund & W. J. P. Smyly, 1990. The relative effects of enrichment and climatic change on the long-term dynamics of Daphnia in Esthwaite Water, Cumbria. Freshwat. Biol. 23: 55–70.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1990. Why do cladocerans fail to control algal blooms? Hydrobiologia, 200/201: 83–97.

    Google Scholar 

  • Grime, J. P., 1979. Plant strategies and vegetation processes. Wiley, Chichester.

    Google Scholar 

  • Harper, D. M., 1992. Eutrophication of freshwaters. Chapman and Hall, London.

    Google Scholar 

  • Heaney, S. I., J. E. Parker, C. Butterwick & K. J. Clarke, 1996. Interannual variability of algal populations and their influence on lake metabolism. Freshwat. Biol. 35: 561–577.

    Article  Google Scholar 

  • Horne, A. J. & M. L. Commins, 1987. Macronutrient controls on nitrogen fixation in planktonic cyanobacterial populations. New Zealand J. mar. freshwat. Res. 21: 413–423.

    CAS  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light in a mixed water column: a theoretical analysis. Am. Nat. 146: 536–564.

    Article  Google Scholar 

  • Jensen, J. P., E. Jeppesen, K. Olrik & P. Kristensen, 1994. Impact of nutrients and physical factors on the shift from Cyanobacteria to Chlorophyte in shallow Danish lakes. Can. J. Fish. aquat. Sci. 51: 1692–1699.

    Google Scholar 

  • Jones, J. G., 1972. Studies on freshwater micro-organisms. Phosphatase activity in lakes of differing degrees of eutrophication. J. Ecol. 60: 777–791.

    Article  CAS  Google Scholar 

  • Kadiri, M. O. & C. S. Reynolds, 1993. Long-term monitoring of the conditions of lakes: the example of the English Lake District. Arch. Hydrobiol. 129: 157–178.

    Google Scholar 

  • Lampert, W., 1977. Studies on the carbon balance of Daphnia pulex De Geer as related to environmental conditions. IV. Determination of the ‘threshold’ concentration as a factor controlling the abundance of zooplankton species. Arch. Hydrobiol. (Suppl.) 48: 361–368.

    CAS  Google Scholar 

  • Levich, A. P., 1996. The role of nitrogen-phosphorus ratio in selecting for dominance of phytoplankton by cyanobacteria or green algae and its application to reservoir management. J. aquat. Ecosyst. Hlth. 5: 55–61.

    Article  Google Scholar 

  • Lund, J. W. G., 1950. Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum. J. Ecol. 38: 1–35.

    Article  Google Scholar 

  • Lund, J. W. G., 1961. The algae of the Malham Tarn district. Field Stud. 1: 85–115.

    Google Scholar 

  • Lund, J. W. G., 1978. Changes in the phytoplankton of an English Lake, 1945–1977. Hydrobiol. J. 14: 6–21.

    Google Scholar 

  • Maberly, S. C., 1996. Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshwat. Biol. 35: 579–598.

    CAS  Article  Google Scholar 

  • Mann, N. H., 1995. How do cells express nutrient limitation at the molecular level? In I. Joint (ed.), Molecular ecology of aquatic microbes. Springer, Berlin: 171–190.

    Google Scholar 

  • Moss, B., 1973a. The influence of environmental factors on the distribution of freshwater algae: an experimental study. II. The role of pH and the carbon dioxide-bicarbonate system. J. Ecol. 61: 157–177.

    Article  CAS  Google Scholar 

  • Moss, B., 1973b. The influence of environmental factors on the distribution of freshwater algae: an experimental study. IV. Growth of test species in natural lake waters and conclusions. J. Ecol. 61: 193–211.

    Article  CAS  Google Scholar 

  • Moss, B., P. Johnes & G. Phillips, 1996. The monitoring of ecological quality and the classification of standing waters in temperate regions: a review and proposal based on a worked scheme for British waters. Biol. Rev. 71: 301–339.

    Google Scholar 

  • Nalewajko, C. & D. R. S. Lean, 1978. Phosphorus kinetics-algal growth relationships in batch cultures. Mitt. int. Ver. theor. angew. Limnol. 21: 184–192.

    CAS  Google Scholar 

  • Naumann, E., 1919. Några synpunkter angående limnoplanktons ökologi med särskild hänsyn till fytoplankton. Svensk bot. Tidskr., 13: 129–163.

    Google Scholar 

  • Olrik, K., 1994. Phytoplankton – Ecology. Miljøsministiert, København.

  • Pearsall, W. H., 1921. The development of vegetation in English lakes, considered in relation to the general evolution of glacial lakes and rock basins. Proc. r. Soc. Lond. B 92: 259–284.

    Article  CAS  Google Scholar 

  • Petersen, R., 1975. The paradox of the plankton: an equilibrium hypothesis. Am. Nat. 109: 35–49.

    Article  Google Scholar 

  • Pick, F. R. & D. R. S. Lean, 1987. The role of macronutrients (C,N,P) in controlling cyanobacterial dominance in temperate lakes. New Zealand J. mar. freshwat. Res. 21: 425–434.

    CAS  Article  Google Scholar 

  • Rawson, D. S., 1956. Algal indicators of trophic lake types. Limnol. Oceanogr. 1: 18–25.

    Article  Google Scholar 

  • Reynolds, C. S., 1986. Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District. Hydrobiologia 138: 43–64.

    Article  Google Scholar 

  • Reynolds, C. S., 1987a. Community organization in the freshwater plankton. In J. H. R. Gee & P. S. Giller (eds), Organization of communities, past and present. Blackwell Scientific Publications, Oxford: 297–325.

    Google Scholar 

  • Reynolds, C. S., 1987b. The response of phytoplankton communities to changing lake environments. Schweiz. Z.Hydrol. 49: 220–236.

    Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In C.D. Sandgren (ed.), Growth and reproductive strategies of freshwater phytoplankton. Cambridge University Press, New York: 388–433.

    Google Scholar 

  • Reynolds, C. S., 1990. Temporal scales of variability in pelagic environments and the responses of phytoplankton. Freshwat.Biol. 23: 25–53.

    Article  Google Scholar 

  • Reynolds, C. S., 1992. Eutrophication and the management of planktonic algae: what Vollenweider couldn't tell us. In D.W. Sutcliffe & J. G. Jones (eds), Eutrophication: research and application to water supply. Freshwater Biological Association, Ambleside: 4–29.

    Google Scholar 

  • Reynolds, C. S., 1993. Swings and roundabouts: engineering the environment of algal growth. In K. H. White, E. G. Bellinger, A. J. Saul, M. Symes & K. Hendry (eds), Urban waterside regeneration, problems and prospects. Ellis Horwood, Chichester: 330–349.

    Google Scholar 

  • Reynolds, C. S., 1995. Successional change in the planktonic vegetation: species, structues, scales. In I. Joint (ed.), The molecular ecology of aquatic microbes. Springer Verlag, Berlin: 115–132.

    Google Scholar 

  • Reynolds, C. S., 1996. Plant life of the pelagic. Verh. int. Ver. theor. angew. Limnol. 26: 97–113.

    Google Scholar 

  • Reynolds, C. S. & E. D. Bellinger, 1992. Patterns of abundance and dominance of the phytoplankton of Rostherne Mere, England: evidence from an 18year data set. Aquat. Sci. 54: 10–36.

    Article  Google Scholar 

  • Reynolds, C. S., G. H. M. Jaworski, J. V. Roscoe, D. P. Hewitt & D. G. George, 1998. Responses of the phytoplankton to a deliberate attempt to raise the trophic status of an acidic, oligotrophic mountain lake. Hydrobiologia 369/370: 127–131.

    Article  Google Scholar 

  • Reynolds, C. S. & J. W. G. Lund, 1988. The phytoplankton of an enriched, soft-water lake, subject to intermittent hydraulic flushing (Grasmere, English Lake District). Freshwat. Biol. 19: 379–404.

    Article  Google Scholar 

  • Reynolds, C. S. & J. B. Reynolds, 1985. The atypical seasonality of phytoplankton in Crose Mere, 1972: an independent test of the hypothesis that variability in the physical environment regulates community dynamics and structure. Br. phycol. J. 20: 227–242.

    Google Scholar 

  • Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson & S. W. Wiseman, 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561–600.

    Google Scholar 

  • Reynolds, C. S., S. W. Wiseman & M. J. O. Clarke. 1984. Growthand loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. appl. Ecol. 21: 11–39.

    Article  Google Scholar 

  • Rhee, G.–Y. and I. J. Gotham, 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16: 486–489.

    Article  CAS  Google Scholar 

  • Riddolls, A., 1985. Aspects of nitrogen fixation in Lough Neagh. II. Competition between Aphanizomenon flosaquae, Oscillatoria redekei and Oscillatoria agardhii. Freshwat. Biol. 15: 299–306.

    Article  Google Scholar 

  • Rodhe, W., 1948. Environmental requirements of freshwater plankton algae: experimental studies in the ecology of phytoplankton. Symbol. bot. Upsal. 10: 5–149.

    CAS  Google Scholar 

  • Saxby, K. J., 1990. The physiological ecology of freshwater chrysophytes with special reference to Synura petersenii. Ph.D. Thesis, University of Birmingham.

  • Saxby-Rouen, K. J., B. S. C. Leadbeater & C. S. Reynolds, 1996. Ecophysiological studies on Synura petersenii (Synurophyceae). Beih. Nova Hedwigia 114: 111–123.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M.–L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. TREE 8: 275–279.

    Google Scholar 

  • Smith, V. H., 1983. Low nitrogen to phosphorus favour dominance by blue-green algae in lake phytoplankton. Science 225: 669–671.

    Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh. int. Ver. theor. angew. Limnol. 24: 38–54.

    Google Scholar 

  • Sommer, U., 1993. Phytoplankton competition in Pluβsee: a field test of the resource-ratio hypothesis. Limnol. Oceanogr. 38: 838–845.

    CAS  Article  Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological stategies? J. anim. Ecol. 46: 337–365.

    Google Scholar 

  • Sverdrup, H. U., M.W. Johnson & R. H. Fleming, 1942. The oceans. Their physics, chemistry and general biology. Prentice Hall, New York.

    Google Scholar 

  • Swale, E. M. F., 1968. The phytoplankton of Oak Mere, Cheshire, 1963–1966. Br. phycol. Bull. 3: 441–449.

    Google Scholar 

  • Talling, J. F., 1976. The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol. 64: 79–121.

    Article  CAS  Google Scholar 

  • Thienemann, A., 1918. Untersuchungen über die Beziehungen zwischen dem Sauerstoffgehalt des Wassers und der Zusammensetzung der Fauna in norddeutschen Seen. Arch. Hydrobiol. 12: 1–65.

    Google Scholar 

  • Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545–560.

    Google Scholar 

  • Tilman, D. & S. S. Kilham, 1976. Phosphate and silicate uptake and growth kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12: 375–383.

    Article  CAS  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton communiy ecology: the role of limiting nutrients. Annu. Rev. Ecol. Syst. 13: 349–372.

    Article  Google Scholar 

  • Trimbee, A. M. & E. E. Prepas, 1987. Evaluation of total phophorus as a predictor of the relative biovolume of bluegreen algae with emphasis on Alberta lakes. Can. J. Fish. aquat. Sci. 44: 1337–1342.

    CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reynolds, C.S. What factors influence the species composition of phytoplankton in lakes of different trophic status?. Hydrobiologia 369, 11–26 (1998). https://doi.org/10.1023/A:1017062213207

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017062213207

  • phytoplankton
  • lake typology
  • trophic status