Skip to main content
Log in

Phytoplankton of two Araucanian lakes of differing trophic status (Argentina)

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The Araucanian lake district in southern South America encompasses many great lakes of glacial origin, as well as a large number of smaller lakes. In this study, we present data on two waterbodies, one large (Nahuel Huapi), and one shallow (Verde). The phytoplankton community structure and dynamics or either lake were monitored for a year, in relation to the physical and chemical fluctuation, as well as the morphometry of the respective basins. In the large lake, the phytoplankton biomass was strongly dominated by diatoms (Aulacoseira granulata, Rhizosolenia eriensis and Cyclotella stelligera) and by dinoflagellates (Gymnodinium and Peridinium spp.). In the small lake, Verde, the dominant algae were Trachelomonas spp. and Cosmarium punctulatum, during the summer biomass maximum, and Rhodomonas lacustris, Chrysochromulina parva and Navicula spp. during autumn. The maximum biomass value was 634 mg m-3 in Lake Nahuel Huapi in spring and 7800 mg m-3 in Lake Verde in summer. According to their phytoplankton and physical and chemical features, Lakes Nahuel Huapi and Verde are readily classifiable, as ultra-oligotrophic and mesotrophic, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Apha, 1985. Standard Methods for the Examination of Water and Wastewater. 16th Ed. American Public Health Association, Washington, 1134 pp.

    Google Scholar 

  • Baigún, C. & M.C. Marinone, 1995. Cold-temperate lakes of South America: do they fit northern hemisphere models? Arch. Hydrobiol. 135: 23–51.

    Google Scholar 

  • Bird, D. F. & J. Kalff, 1987. Algal phagotrophy: Regulating factors and importance relative to photosyntesis in Dinobryon (Chrysophyceae). Limnol. Oceanogr. 32: 277–284.

    CAS  Google Scholar 

  • Bonetto, A.A., W. Dioni & P. Depetris, 1971. Informe preliminar sobre las investigaciones limnológicas en la cuenca del río Manso y lago Mascardi (Rio Negro, Argentina). Publicación No. 4. Depto. de Recursos Naturales y Energía. Fundación Bariloche, 62 pp.

  • Campos, H., 1984. Limnological study of Araucanian lakes (Chile). Verh. int. Ver. Limnol. 22: 1319–1327.

    CAS  Google Scholar 

  • Campos, H., W. Steffen, G. Agüero, O. Parra & L. Zuñiga, 1987. Limnology of lake Riñihue. Limnologica 18: 339–357.

    CAS  Google Scholar 

  • Cordini, J. R., 1939. El lago Nahuel Huapi. Bol. Direcc. Min. Geol., B. Aires, 47 pp.

  • Cordini, J. R., 1950. Algunas características limnológicas del Lago Nahuel Huapi. Anales del Museo Nahuel Haupi Perito Dr. Francisco P. Moreno 2: 113–127.

    Google Scholar 

  • Diaz, M. & F. Pedrozo, 1993. Seasonal succession of phytoplankton in a small Andean Patagonian lake (Rep. Argentina) and some considerations about the PEG model. Arch. Hydrobiol. 127: 167– 184.

    Google Scholar 

  • Diaz, M. & F. Pedrozo, 1996. Nutrient limitation in AndeanPatagonian lakes at latitude 40–41° S. Arch. Hydrobiol. 138: 123–143.

    CAS  Google Scholar 

  • Duthie, H. C. & V. M. Stout, 1986. Phytoplankton periodicity of the Waitaki Lakes, New Zealand. Hydrobiologia 138: 221–236.

    Article  Google Scholar 

  • Garcia de Emiliani, M.O. & M. Schiaffino, 1974. Fitoplancton del lago Mascardi (Río Negro, Argentina). Bol. Soc. Arg. Bot. 15: 12–22.

    Google Scholar 

  • Golterman, H. L., R. Clymo & M. Ohnstad, 1978. Methods for Physical and Chemical Analysis of Freshwater. IBP Handbook, 8, Blackwell, London, 140 pp.

    Google Scholar 

  • Grasshoff, K., M. Ehrhardt & K. Kremling, 1983. Methods of seawater analysis. Verlag. Chemie, Second, revised and extended edition, 419 pp.

  • Izaguirre, I., P. del Giorgio, I. O'Farrell & G. Tell, 1990. Clasificación de 20 cuerpos de agua andinopatagónicos (Argentina) en base a la estructura del fitoplancton estival. Cryptogamie Algol. 11: 31–46.

    Google Scholar 

  • Izaguirre, I., 1993. Comparative analysis of the phytoplankton of six lentic environments from the Province of Chubut (Argentina). Physis (Buenos Aires), Sec. B, 48: 7–23.

    Google Scholar 

  • Mackereth, F. J. H., J. Heron & J.F. Talling, 1978. Water analysis. Freshwater Biological Association. Scientific Publication N° 36, 120 pp.

  • Margalef, R., 1983. Limnología. Omega, 1010 pp.

  • MenuMarque, S. & C. Marinone, 1985. El zooplancton de seis lagos del Chubut (Argentina) y sus probables relaciones con la ictiofauna y algunos factores ambientales. Taller internacional sobre Ecología y manejo de peces en lagos y embalses. FAO, Roma: 158–178.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters, monitoring, assessment and control. OECD, Paris, 154 pp.

    Google Scholar 

  • Pedrozo, F., M. Manuel, R. Alcalde & W. Lopez, 1995. Estado trófico del Lago Nahuel Huapi y estimación preliminar de su posible evolución trófica. Informe técnico del Centro Regional Universitario Bariloche, Universidad Nacional del Comahue y el Departamento Provincial de Aguas de la Provincia de Río Negro, 23 pp.

  • Quirós, R., 1988. Relationships between air temperature, depth, nutrients and chlorophyll in 103 Argentinian lakes. Verh. int. Ver. Limnol. 23: 647–658.

    Google Scholar 

  • Quirós, R., 1990. Predictors of relative fish biomass in lakes and reservoirs of Argentina. Can. J. Fish. Aquat. Sci. 47: 928–939.

    Article  Google Scholar 

  • Quirós, R., 1991. Empirical relationships between nutrients, phytoand zooplankton and relative fish biomass in lakes and reservoirs of Argentina. Verh. int. Ver. Limnol. 24: 1198–1206.

    Google Scholar 

  • Quiros, R. & E. Drago, 1985. Relaciones entre variables físicas, morfométricas y climáticas en lagos patagónicos. Rev. Asoc. Cs. Nat. Litoral 16: 181–199.

    Google Scholar 

  • Rawson, D. S., 1956. Algal indicators of trophic lake types. Limnol. Oceanogr. 1: 18–25.

    Article  Google Scholar 

  • Reynolds, C. S., 1984a. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, 384 pp.

    Google Scholar 

  • Reynolds, C. S., 1984b. Phytoplankton periodicity: The interactions of form, function and environmental variability. Freshwat. Biol. 14: 111–142.

    Article  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol. 106: 433–471.

    Google Scholar 

  • Temporetti, P., M. Alonso, G. Baffico, M. Díaz, W. Lopez & F. Pedrozo, ms. Estado trófico, comunidad íctica y producción intensiva de salmónidos en el embalse de Alicurá (Patagonia, Argentina). Serie COPESCAL, FAO, 26 pp, in press.

  • Thomasson, K., 1959. Nahuel Huapi. Plankton of same lakes in an Argentine National Park, with notes on terrestrial vegetation. Acta Phytogeogr. Suecica 42: 1–83.

    Google Scholar 

  • Thomasson, K., 1963. Araucanian lakes. Plankton Studies in North Patagonia, with notes on Terrestrial vegetation. Acta Phytogeogr. Suecica 47: 1–139.

    Google Scholar 

  • Vollenweider, R. A., 1968. Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular references to nitrogen and phosphorus as factors in eutrophication. OECD Report, Paris.

    Google Scholar 

  • Vollenweider, R.A., 1969. A manual on methods for measuring primary production in aquatic environments. IBP Handb. N° 12. Blackwell Scientific Publications, Oxford, 213 pp.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, M.M., Pedrozo, F.L. & Temporetti, P.F. Phytoplankton of two Araucanian lakes of differing trophic status (Argentina). Hydrobiologia 369, 45–57 (1998). https://doi.org/10.1023/A:1017046302728

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017046302728

Navigation