Skip to main content
Log in

Time-delayed interferometry with nuclear resonant scattering

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

Experimental results of “time-delayed interferometry” with nuclear resonances at KEK are reported. Mössbauer nuclei were used as a cavity for X-rays in these experiments. Various interference effects were observed on a macroscopic scale with the “perfect crystal” interferometer. The property of coherence and the combined system showed some characteristics of collective nuclear excitations, e.g., absorption of photons without the reduction of the detection probability, the phase information transfer, and spontaneous emission with phase relation. Interferometry with a large optical path length, i.e., 4.2 mm, was accomplished with a wave-front division type X-ray interferometer. An interference experiment with a vibrating resonant scatterer exhibited quantum beat oscillations in the time domain. Interferograms with samples of different thicknesses revealed a remarkable phase shift of π in the time evolution, which is induced by the dispersion effect at the nuclear resonance. A future perspective of time-delayed interferometry is also presented, e.g., for temporal phenomena in nuclear resonant scattering. Time-delayed interferometry has established a new field of X-ray optics, which can be of help for fundamental, nuclear, and solid state physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Bonse and M. Hart, Appl. Phys. Lett. 6 (1965) 155.

    Google Scholar 

  2. U. Bonse and M. Hart, Z. Phys. 188 (1965) 154.

    Google Scholar 

  3. U. Bonse and M. Hart, Z. Phys. 194 (1966) 1.

    Google Scholar 

  4. A. Zeilinger, C.G. Shull, M.A. Horne and G.L. Squires, in: Neutron Interferometry, eds. U. Bonse and H. Rauch (Oxford Univ. Press, London, 1979) p. 48.

    Google Scholar 

  5. A. Zeilinger, C.G. Shull, J. Arther and M.A. Horne, Phys. Rev. A 28 (1983) 487.

    Google Scholar 

  6. P. Becker, K. Dorenwendt, G. Ebeling, R. Lauer, W. Lucas, R. Probst, H.-J. Rademacher, G. Reim, P. Seyfried and H. Siegert, Phys. Rev. Lett. 46 (1981) 1540.

    Google Scholar 

  7. U. Bonse and G. Materlik, Acta Crystallogr. A 31 (1975) 232.

    Google Scholar 

  8. M. Hart and D.P. Siddons, Proc. Roy. Soc. London A 376 (1981) 465.

    Google Scholar 

  9. Y. Hasegawa and S. Kikuta, Z. Phys. B 93 (1994) 133.

    Google Scholar 

  10. Y. Hasegawa and S. Kikuta, Phys. Lett. A 195 (1994) 43.

    Google Scholar 

  11. G. Materlik, C.J. Sparks and K. Fischer, Resonant Anomalous X-Ray Scattering. Theory and Applications (Elsevier, New York, 1994).

    Google Scholar 

  12. L. Allen and J.H. Eberly, in: Optical Resonance and Two-level Atoms, Interscience Monographs and Texts in Physics and Astronomy, Vol. 28 (Wiley/Interscience, New York, 1975).

    Google Scholar 

  13. T.C. Farrar and E.D. Becker, Pulse and Fourier Transform NMR. Introduction to Theory and Methods (Academic Press, New York, 1971).

    Google Scholar 

  14. J.B. Hastings, D.P. Siddons, U. van Bürck, R. Hollatz and U. Bergmann, Phys. Rev. Lett. 66 (1991) 770.

    Google Scholar 

  15. T. Hellmuth, A.G. Zajonc and H. Walther, in: New Technique and Ideas in Quantum Measurement Theory (The New York Academy of Sciences, 1986) p. 108.

  16. Y. Hasegawa, Y. Yoda, K, Izumi, T. Ishikawa, S. Kikuta, X.W. Zhang, H. Sugiyama and M. Ando, Japan J. Appl. Phys. 33 (1994) 772.

    Google Scholar 

  17. D. Bohm, in: Quantum Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1951).

    Google Scholar 

  18. J.D. Franson, Phys. Rev. Lett. 62 (1989) 2205.

    Google Scholar 

  19. M. Horne, A. Shimony and A. Zeilinger, Phys. Rev. Lett. 62 (1989) 2209.

    Google Scholar 

  20. A.P. Kasantsev, G.I. Surdutovich and V.P. Yakovlev, Mechanical Action of Light on Atoms (World Scientific, Singapore, 1990).

    Google Scholar 

  21. Y. Hasegawa, Y. Yoda, K. Izumi, T. Ishikawa, S. Kikuta, X.W. Zhang and M. Ando, Phys. Rev. Lett. 75 (1995) 2216.

    Google Scholar 

  22. Y. Kunimune, Y. Yoda, K. Izumi, M. Yabashi, X.W. Zhang, T. Harami, M. Ando and S. Kikuta, J. Synchrotron Rad. 4 (1997) 199.

    Google Scholar 

  23. R. Loudon, in: The Quantum Theory of Light, 2nd ed. (Clarendon Press, Oxford, 1983) p. 162.

    Google Scholar 

  24. A. Appel and U. Bonse, Phys. Rev. Lett. 67 (1991) 1673.

    Google Scholar 

  25. A.A. Michelson, Amer. J. Sci. 122 (1881) 120.

    Google Scholar 

  26. K. Izumi, T. Mitsui, M. Seto, Y. Yoda, T. Ishikawa, X.W. Zhang, M. Ando and S. Kikuta, Japan J. Appl. Phys. 34 (1995) 5862.

    Google Scholar 

  27. V.L. Lepore, Phys. Rev. A 48 (1993) 111.

    Google Scholar 

  28. Y. Hasegawa, Y. Yoda, K. Izumi, T. Ishikawa, S. Kikuta, X.W. Zhang and M. Ando, Phys. Rev. B 50 (1994) 17748.

    Google Scholar 

  29. Yu. Kagan, A.M. Afanas'ev and V.G. Kohn, J. Phys. 12 (1979) 615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, Y., Kikuta, S. Time-delayed interferometry with nuclear resonant scattering. Hyperfine Interactions 123, 721–739 (1999). https://doi.org/10.1023/A:1017044528276

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017044528276

Keywords

Navigation