Spider toxins: A new group of potassium channel modulators


Spider toxins that target potassium channels constitute a new class of pharmacological tools that can be used to probe the structure and function of these channels at the molecular level. The limited studies performed to date indicate that these peptide toxins may facilitate the analysis of K+ channels that have proved insensitive to peptide inhibitors isolated from other animal sources. Thus far, two classes of K+ channel-selective spider toxins have been isolated, sequenced, and pharmacologically characterised – the hanatoxins (HaTx) from Grammastola spatulata and heteropodatoxins (HpTx) from Heteropoda venatoria. The hanatoxins block Kv2.1 and Kv4.2 voltage-gated K+ channels. In Kv2.1 K+ channels this occurs as a consequence of a depolarising shift in the voltage dependence of activation and not by occlusion of the channel pore. These toxins show minimal sequence homology with other peptide inhibitors of K+ channels, but they do share some homology with other ion channel toxins from spiders, particularly with regard to the spacing between cysteine residues. We have recently isolated three K+ channel antagonists from the venom of the Australian funnel-web spider Hadronyche versuta; at least two of these toxins are likely to constitute a new class of spider toxins active on K+ channels as they are approximately twice as large as HaTx and HpTx.

This is a preview of subscription content, access via your institution.


  1. 1.

    Nicholson, G.M., Willow, M., Howden, M.E.H. and Narahashi, T., Pflügers Arch. (Eur. J. Physiol.), 428 (1994) 400.

    Google Scholar 

  2. 2.

    Nicholson, G.M., Walsh, R., Little, M.J. and Tyler, M.I., Pflügers Arch. (Eur. J. Physiol.), 436 (1998) 117.

    Google Scholar 

  3. 3.

    Araujo, D.A.M., Cordeiro, M.N., Diniz, C.R. and Beirao, P.S.L., Naunyn-Schmiedeberg's Arch. Pharmacol., 347 (1993) 205.

    Google Scholar 

  4. 4.

    Olivera, B.M., Miljanich, G.P., Ramachandran, J. and Adams, M.E., Annu. Rev. Biochem., 63 (1994) 823.

    Google Scholar 

  5. 5.

    Bindokas, V.P. and Adams, M.E., J. Neurobiol., 20 (1989) 171.

    Google Scholar 

  6. 6.

    Lampe, R.A., Defeo, P.A., Davison. M.D., Young, J., Herman, J.L., Spreen, R.C., Horn, M.B., Mangano, T.J. and Keith, R.A., Mol. Pharmacol., 44 (1993) 451.

    Google Scholar 

  7. 7.

    Newcomb, R., Fox, J., Gaur, S., Lau, K., Chung, D., Cong, R., Bell, J.R., Horne, B., Nadasdi, L. and Ramachandran, J., Biochemistry, 34 (1995) 8341.

    Google Scholar 

  8. 8.

    Quistad, G.B., Suwanrumpha, S., Jarema, M.A., Shapiro, M.J., Skinner, W.S., Jamieson, G.C., Lui, A. and Fu, E.W., Biochem. Biophys. Res. Commun., 169 (1990) 51.

    Google Scholar 

  9. 9.

    Herlitze, S., Raditsch, M., Ruppersberg, J.P., Jahn, W., Monyer, H., Schoepfer, R. and Witzemann, V., Neuron, 10 (1993) 1131.

    Google Scholar 

  10. 10.

    Miwa, A., Kawai, N., Saito, M., Pan-Hou, H. and Yoshioka, M., Neurophysiology, 58 (1987) 319.

    Google Scholar 

  11. 11.

    Fletcher, J.I., Smith, R., O'Donoghue, S., Nilges, M., Connor, M., Howden, M.E.H., Christie, M.J. and King, G.F., Nature Struct. Biol., 4 (1997) 559.

    Google Scholar 

  12. 12.

    Swartz, K.J. and MacKinnon, R., Neuron, 15 (1995) 941.

    Google Scholar 

  13. 13.

    Sanguinetti, M.C., Johnson, J.H., Hammerland, L.G., Kelbaugh, P.R., Volkmann, R.A., Saccomano, N.A. and Mueller, A.L., Mol. Pharmacol., 51 (1997) 491.

    Google Scholar 

  14. 14.

    Swartz, K.J. and MacKinnon, R., Neuron, 18 (1997) 665.

    Google Scholar 

  15. 15.

    Swartz, K.J. and MacKinnon, R., Neuron, 18 (1997) 675.

    Google Scholar 

  16. 16.

    MacKinnon, R. and Miller, C., Science, 245 (1989) 1382.

    Google Scholar 

  17. 17.

    Hurst, R.S., Busch, A.E., Kavanaugh, M.P., Osborne, P.S., North, R.A. and Adelman, J.P., Mol. Pharmacol., 40 (1991) 572.

    Google Scholar 

  18. 18.

    Stocker, M., Pongs, O., Hoth, M., Heinemann, S.H., Stühmer, W., Schröter, K.-H. and Ruppersberg, J.P., Proc. R. Soc. Lond. (Biol.), 245 (1991) 101.

    Google Scholar 

  19. 19.

    Garcia, M.L., Garcia-Calvo, M., Hidalgo, P., Lee, A.W. and MacKinnon, R., Biochemistry, 33 (1994) 6834.

    Google Scholar 

  20. 20.

    Kaiser, I.I., Griffin, P.R., Aird, S.D., Hudiburg, S., Shabanowitz, J., Francis, B., John, T.R., Hunt, D.F. and Odell, G.V., Toxicon, 32 (1994) 1083.

    Google Scholar 

  21. 21.

    Krezel, A.M., Kasibhatla, C., Hidalgo, P., MacKinnon, R. and Wagner G., Protein Sci., 4 (1995) 1478.

    Google Scholar 

  22. 22.

    Cordeiro, M.N., Diniz, C.R., Valentim, A.C., von Eickstedt, V.R., Gilroy, J. and Richardson, M., FEBS Lett., 310 (1992) 153.

    Google Scholar 

  23. 23.

    Liang, S.P., Zhang, D.Y., Pan, X., Chen, Q. and Zhou, P.A., Toxicon, 31 (1993) 969.

    Google Scholar 

  24. 24.

    Pallaghy, P.K., Nielsen, K.J., Craik, D.J. and Norton, R.S., Protein Sci., 3 (1994) 1833.

    Google Scholar 

  25. 25.

    Fletcher, J.I., Chapman, B.E., Mackay, J.P., Howden, M.E.H. and King, G.F., Structure, 5 (1997) 1525.

    Google Scholar 

  26. 26.

    Omecinsky, D.O., Holub, K.E., Adams, M.E. and Reily, M.D., Biochemistry, 35 (1996) 2836.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Glenn F. King.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fletcher, J.I., Wang, X., Connor, M. et al. Spider toxins: A new group of potassium channel modulators. Perspectives in Drug Discovery and Design 15, 61–69 (1999). https://doi.org/10.1023/A:1017039418046

Download citation

  • hanatoxins
  • heteropodatoxins
  • funnel-web spider toxins
  • spider toxins
  • voltage-gated K+ channels