Skip to main content
Log in

Evolution of intermediate selfing rates in plants: pollination ecology versus deleterious mutations

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The evolutionarily stable rate of self-fertilzation is studied in phenotypic models that incorporate pollination ecology as well as the correlated evolution of inbreeding depression and the population mean selfing rate. Inbreeding depression is assumed to be caused by continual mutation to deleterious, partially recessive alleles. Several mutation rates and dominance levels are included. Two separate ecological cases are studied: how selfing rate affects proportion of ovules fertilized (pollination assurance, seed discounting) and how selfing rate affects male outcrossing success through pollen discounting. Evolutionarily stable rates are invariably zero or intermediate in two circumstances, namely when increased selfing causes (1) a decrease in the proportion of ovules fertilized or (2) an increase in pollen discounting and, therefore, a disproportionate decrease in male outcrossing success. Complete selfing is stable when selfing increases the proportion of ovules fertilized for all selfing rates. Stable selfing is zero or one in cases where the selfing rate has no effect on the proportion of ovules fertilized or when pollen discounting does not increase with selfing. Higher inbreeding depression tends to decrease the optimal selfing rate, and lower inbreeding depression (higher dominance coefficients and lower mutation rates) is more favorable to the existence of stable intermediate selfing rates. Approaches such as this that explicitly incorporate the interdependence of selfing, ovule fertilization, and male outcrossing may help explain the persistence of intermediate selfing rates in animal-pollinated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aide, T.M., 1986. The influence of wind and animal pollination on variation in outcrossing rates. Evolution 40: 434-435.

    Article  Google Scholar 

  • Barrett, S.C.H. & C.G. Eckert, 1990. Variation and evolution of mating systems in seed plants, pp. 230-254 in Biological Approaches and Evolutionary Trends in Plants. Academic Press Limited.

  • Campbell, R.B., 1986. The interdependence of mating structure and inbreeding depression. Theor. Popul. Biol. 30: 232-244.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1980. The cost of sex in relation to mating system. J. Theor. Biol. 84: 655-671.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., M.T. Morgan & D. Charlesworth, 1991. Multilocus models of inbreeding depression with synergistic selection and partial self-fertilization. Genet. Res. 57: 177-194.

    Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1987. Inbreeding depression and its evolutionary consequences. Ann. Rev. Ecol. Syst. 18: 237-268.

    Article  Google Scholar 

  • Charlesworth, D. & B. Charlesworth, 1990. Inbreeding depression with heterozygote advantage and its effect on selection for modifiers changing the outcrossing rate. Evolution 44: 870-888.

    Article  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1990. Inbreeding depression, genetic load, and the evolution of outcrossing rates in amultilocus system with no linkage. Evolution 44: 1469-1489.

    Article  Google Scholar 

  • Charlesworth, D., M.T. Morgan & B. Charlesworth, 1992. The effect of linkage and population size on inbreeding depression due to mutational load. Genet. Res. 59: 49-61.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J.F., 1993. Mutation, mean fitness, and genetic load, pp. 342 in Oxford Surveys in Evolutionary Biology, edited by D. J. Futuyma & J. Antonovics. Oxford University Press, New York.

    Google Scholar 

  • Damgaard, C., D. Couvet & V. Loeschcke, 1992. Partial selfing as an optimal mating strategy. Heredity 69: 289-295.

    Google Scholar 

  • Endress, P.K., 1994. Diversity and Evolutionary Biology of Tropical Flowers. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Fisher, R.A., 1941. Average excess and average effect of a gene substitution. Ann. Eugen. 11: 53-63.

    Google Scholar 

  • Fu, Y.B. & K. Ritland, 1994. Evidence for the partial dominance of viability genes contributing to inbreeding depression in Mimulus guttatus. Genetics 136: 323-331.

    PubMed  CAS  Google Scholar 

  • Harder, L.D. & S.C.H. Barrett, 1995. Mating cost of large floral displays in hermaphrodite plants. Nature 373: 512-515.

    Article  CAS  Google Scholar 

  • Holsinger, K.E., 1986. Dispersal and plant mating systems: The evolution of self-fertilization in subdivided populations. Evolution 40: 405-413.

    Article  Google Scholar 

  • Holsinger, K.E., 1988. Inbreeding depression doesn’t matter: The genetic basis of mating system evolution. Evolution 42: 1235-1244.

    Article  Google Scholar 

  • Holsinger, K.E., 1991. Mass-action models of plant mating systems: The evolutionary stability of mixed mating systems. Amer. Natur. 138: 606-622.

    Article  Google Scholar 

  • Holsinger, K.E., 1992 Ecological models of plant mating systems, pp. 169-191 in Ecology and Evolution of Plant Reproductive Systems, edited by R.W. Wyatt. Chapman and Hall, New York.

    Google Scholar 

  • Holsinger, K.E., 1996. Pollination biology and the evolution of mating systems in flowering plants. Evol. Biol. 29: 107-149.

    Google Scholar 

  • Holsinger, K.E.,M.W. Feldman & F.B. Christiansen, 1984. The evolution of self-fertilization in plants: A population-genetic model. Amer. Natur. 124: 446-453.

    Article  Google Scholar 

  • Holtsford, T.P. & N.C. Ellstrand, 1990. Inbreeding effects in Clarkia tembloriensis (Onagraceae) populations with different natural outcrossing rates. Evolution 44: 2031-2046.

    Article  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness in Drosophila. Nature 359: 58-60.

    Article  PubMed  CAS  Google Scholar 

  • Husband, B.C.& D.W. Schemske, 1996. Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50: 54-70.

    Article  Google Scholar 

  • Jain, S.K., 1976. The evolution of inbreeding in plants. Annu. Rev. Ecol. Syst. 7: 469-495.

    Article  Google Scholar 

  • Jarne, P. & D. Charlesworth, 1993. The evolution of selfing rate in functionally hermaphrodite plants and animals. Annu. Rev. Ecol. Syst. 24: 441-466.

    Article  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1995. Mutation rates and dominance levels of genes affecting total fitness in two angiosperm species. Science Wash 267: 226-229.

    CAS  Google Scholar 

  • Johnston, M.O. & D.J. Schoen, 1996. Correlated evolution of self-fertilization and inbreeding depression: An experimental study of nine populations of Amsinckia (Boraginaceae). Evolution 50: 1478-1491.

    Article  Google Scholar 

  • Keightly, P.D. & A. Caballero, 1997. Genomic mutation rates for lifetime reproductive output and lifespan in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 94: 3823-3827.

    Article  Google Scholar 

  • Kondrashov, A.S., 1988. Deleterious mutations and the evolution of sexual reproduction. Nature 336: 435-440.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. & S.J. Arnold, 1983. The measurement of selection on correlated characters. Evolution 37: 1210-1226.

    Article  Google Scholar 

  • Lande, R. & D. W. Schemske, 1985. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39: 24-40.

    Article  Google Scholar 

  • Latta, R. & K. Ritland, 1993. Models for the evolution of selfing under alternative modes of inheritance. Heredity 71: 1-10.

    Google Scholar 

  • Latta, R. & K. Ritland, 1994a. Conditions favoring stable mixed mating systems with jointly evolving inbreeding depression. J. Theor. Biol. 170: 15-24.

    Article  Google Scholar 

  • Latta, R. & K. Ritland, 1994b. The relationship between inbreeding depression and prior inbreeding among populations of four Mimulus taxa. Evolution 48: 806-817.

    Article  Google Scholar 

  • Lloyd, D.G., 1979. Some reproductive factors affecting the selection of self-fertilization in plants. Amer. Natur. 113: 67-79.

    Article  Google Scholar 

  • Lloyd, D.G., 1983. Evolutionarily stable sex ratios and sex allocations. J. Theoret. Biol. 105: 525-539.

    Article  Google Scholar 

  • Lloyd, D.G., 1992. Self-and cross-fertilization in plants. II. The selection of self-fertilization. Int. J. Plant Sci. 153: 370-380.

    Article  Google Scholar 

  • Lloyd, D.G. & D.J. Schoen, 1992. Self-and cross-fertilization in plants. I. functional dimensions. Int. J. Plant Sci. 153: 358-369.

    Article  Google Scholar 

  • Nagylaki, T., 1976. A model for the evolution of self-fertilization and vegetative reproduction. J. Theoret. Biol. 58: 55-58.

    Article  CAS  Google Scholar 

  • Sakai, S., 1995. Evolutionarily stable selfing rates of hermaphroditic plants in competing and delayed selfing modes with allocation to attractive structures. Evolution 49: 557-564.

    Article  Google Scholar 

  • Schemske, D.W. & R. Lande, 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution 37: 523-539.

    Article  Google Scholar 

  • Schemske, D.W. & R. Lande, 1987. On the evolution of plant mating systems. Amer. Natur. 130: 804-809.

    Article  Google Scholar 

  • Schoen, D.J. & D.G. Lloyd, 1984. The selection of cleistogamy and heteromorphic diaspores. Biol. J. Linn. Soc. 23: 303-322.

    Google Scholar 

  • Simmons, M.J. & J.F. Crow, 1977. Mutations affecting fitness in Drosophila populations. Ann. Rev. of Genet. 11: 49-78.

    Article  CAS  Google Scholar 

  • Uyenoyama, M.K., K.E. Holsinger & D.M. Waller, 1993. Ecological and genetic factors directing the evolution of self-fertilization. Oxford Surv. Evol. Biol. 9: 327-381.

    Google Scholar 

  • Uyenoyama, M.K. & D.M. Waller, 1991. Coevolution of self-fertilization and inbreeding depression. II. Symmetric overdominance in viability. Theor. Popul. Biol. 40: 47-77.

    Article  PubMed  CAS  Google Scholar 

  • Waller, D.M., 1986. Is there disruptive selection for self-fertilization? American Naturalist 128: 421-426.

    Article  Google Scholar 

  • Williams, G.C., 1975. Sex and Evolution. Princeton Univ. Press, Princeton, N.J.

    Google Scholar 

  • Wright, S., 1977. Evolution and the Genetics of Populations, Vol. 3. Experimental Results and Evolutionary Deductions. Univ. Chicago Press, Chicago.

    Google Scholar 

  • Yampolsky, C. & H. Yampolsky, 1922. Distribution of sex forms in the phanerogamic flora. Bibliotheca Genetica 3: 1-62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnston, M.O. Evolution of intermediate selfing rates in plants: pollination ecology versus deleterious mutations. Genetica 102, 267–278 (1998). https://doi.org/10.1023/A:1017039010191

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017039010191

Navigation