Skip to main content
Log in

How should we explain variation in the genetic variance of traits?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Recent work has called attention to large differences among traits in the amount of standardized genetic variance they possess. There are four general factors which could play a role in causing this variation: mutation, elimination of deleterious variation, selection of favorable alleles, and balancing selection. Three factors could directly influence the mutational variability of traits: canalization, the mutational target size, and the timing of trait expression. Here I carry out simple tests of the importance of some of these factors using data from Drosophila melanogaster. I compiled information from the literature on the mutational and standing genetic variances in outbred populations, inferred the relative mutational target size of each trait, its a timing of expression, and used models of life history to calculate fitness sensitivities for each trait. Mutation variation seems to play an important role, as it is highly correlated with standing variance. The target size hypothesis was supported by a significant correlation between mutational variance and inferred target size. There was also a significant relationship between the timing of trait expression and mutational variance. These hypotheses are confounded by a correlation between timing and target size. The elimination and canalization hypotheses were not supported by these data, suggesting that they play a quantitatively less important role in determining overall variances. Additional information concerning the pleiotropic consequences of mutations would help to validate the fitness sensitivities used to test the elimination and canalization hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bürger, R., 1993. Predictions of the dynamics of a polygenic character under directional selection. J. Theor. Biol. 162: 487-513.

    Article  PubMed  Google Scholar 

  • Crow, J.F., 1979. Minor viability mutants in Drosophila. Genetics 92: s165-s172.

    PubMed  CAS  Google Scholar 

  • Eanes, W.., C. Wesley, J. Hey, D. Houle & J.W. Ajioka, 1988. The fitness consequences of P element insertion in Drosophila melanogaster. Genet. Res. 52: 17-6.

    Article  Google Scholar 

  • Falconer, D.S., 1981. Introduction toQuantitative Genetics, 2nd edn. Longman, London.

    Google Scholar 

  • García-Dorado, A. & J.A. González, 1996. Stabilizing selection detected for bristle number in Drosophila melanogaster. Evolution 50: 1573-1578.

    Article  Google Scholar 

  • Houle, D., 1991. Genetic covariance of fitness correlates: what genetic correlations are made of and why it matters. Evolution 45: 630-648.

    Article  Google Scholar 

  • Houle, D., 1992. Comparing evolvability and variability of quantitative traits. Genetics 130: 195-204.

    PubMed  CAS  Google Scholar 

  • Houle, D., D.K. Hoffmaster, S. Assimacopoulos & B. Charlesworth, 1992. The genomic mutation rate for fitness in Drosophila. Nature 359: 58-60.

    Article  PubMed  CAS  Google Scholar 

  • Houle, D., K.A. Hughes, D.K. Hoffmaster, J. Ihara, S. Assimacopoulos, D. Canada & B. Charlesworth, 1994. The effects of spontaneous mutation on quantitative traits. I. Variance and covariance of life history traits. Genetics 138: 773-785.

    PubMed  CAS  Google Scholar 

  • Houle, D., B. Morikawa & M. Lynch, 1996. Comparing mutational variabilities. Genetics 143: 1467-1483.

    PubMed  CAS  Google Scholar 

  • Judd, B.H., M.W. Shen & T.C. Kaufman, 1972. The anatomy and function of a segment of the X chromosome of Drosophila melanogaster. Genetics 71: 139-156.

    PubMed  CAS  Google Scholar 

  • Kimura, M. & T. Ohta, 1971. Theoretical aspects of population genetics. Princeton University Press, Princeton.

    Google Scholar 

  • Lai, C., R.F. Lyman, A.F. Long, C.H. Langley & T.F.C. Mackay, 1994. Naturally occurring variation in bristle number and DNA polymorphisms at the scabrous locus of Drosophila melanogaster. Science 266: 1697-1702.

    PubMed  CAS  Google Scholar 

  • Lande, R., 1977. On comparing coefficients of variation. Syst. Zool. 26: 214-217.

    Article  Google Scholar 

  • Lande, R., 1980. Genetic variation and phenotypic evolution during allopatric speciation. Amer. Natur. 116: 463-479.

    Article  Google Scholar 

  • Long, A.D., S.L. Mullaney, L.A. Reid, J.D. Fry, C.H. Langley & T.F.C. Mackay, 1995. High resolution mapping of genetic factors affecting abdominal bristle number in Drosophila melanogaster. Genetics 139: 1273-1291.

    PubMed  CAS  Google Scholar 

  • Lyman, R.F., F. Lawrence, S.V. Nuzhdin & T.F.C. Mackay, 1996. Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143: 277-292.

    PubMed  CAS  Google Scholar 

  • Lynch, M., 1985. Spontaneous mutations for life-history characters in an obligate parthenogen. Evolution 39: 804-818.

    Article  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & M.S. Jackson, 1992. Effects of P element insertions on quantitative traits in Drosophila melanogaster. Genetics 130: 315-332.

    PubMed  CAS  Google Scholar 

  • Mackay, T.F.C., R.F. Lyman & W.G. Hill, 1995. Polygenic mutation in Drosophila melanogaster: nonlinear divergence among unselected strains. Genetics 139: 849-859.

    PubMed  CAS  Google Scholar 

  • MacMillan, M.F., F. Fitz-Earle & D.S. Robson, 1970. Quantitative genetics of fertility. I. Lifetime egg production of D. melanogaster theoretical. Genetics 65: 349-353.

    Google Scholar 

  • Mousseau, T.A. & D.A. Roff, 1987. Natural selection and the heritability of fitness components. Heredity 59: 181-197.

    PubMed  Google Scholar 

  • Mukai, T. & T. Yamazaki, 1971. The genetic structure of natural populations of Drosophila melanogaster. X. Developmental time and viability. Genetics 69: 385-398.

    PubMed  CAS  Google Scholar 

  • Nuzhdin, S.V., J.D. Fry & T.F.C. Mackay, 1995. Polygenic mutation in Drosophila melanogaster: the causal relationship of bristle number to fitness. Genetics 139: 861-872.

    PubMed  CAS  Google Scholar 

  • Riska, B., W.R. Atchley & J.J. Rutledge, 1984. A genetic analysis of targeted growth in mice. Genetics 107: 79-101.

    PubMed  CAS  Google Scholar 

  • Roff, D., 1981. On being the right size. Amer. Natur. 118: 405-422.

    Article  Google Scholar 

  • Roff, D.A. & T.A. Mousseau, 1987. Quantitative genetics and fitness: lessons from Drosophila. Heredity 58: 103-118.

    PubMed  Google Scholar 

  • Rose, M., 1982. Antagonistic pleiotropy, dominance, and genetic variation. Heredity 48: 63-78.

    Google Scholar 

  • Rowe, L. & D. Houle, 1996. The lek paradox and the capture of genetic variance by condition dependent traits. Proc. Roy. Soc. London, Ser. B 263: 1415-1421.

    Google Scholar 

  • SAS Institute, I., 1990. SAS/STAT User's Guide, Version 6, 4th edn. SAS Institute, Cary, NC.

    Google Scholar 

  • Stearns, S.C., 1992. The Evolution ofLife Histories. Oxford, Oxford.

  • Stearns, S.C. & T.J. Kawecki, 1994. Fitness sensitivity and the canalization of life-history traits. Evolution 48: 1438-1450.

    Article  Google Scholar 

  • Stearns, S.C., M. Kaiser & T.J. Kawecki, 1995. The differential genetic and environmental canalization of fitness components in Drosophila melanogaster. J. Evol. Biol. 8: 539-557.

    Article  Google Scholar 

  • Sved, J.A. & F.J. Ayala, 1970. A population cage test for heterosis in Drosophila pseudoobscura. Genetics 66: 97-113.

    PubMed  CAS  Google Scholar 

  • Waddington, C.H., 1957. The Strategy of the Genes. MacMillan Co., New York.

    Google Scholar 

  • Wagner, G., G. Booth & H. Bagheri-Chaichian, 1997. A population genetic theory of canalization. Evolution 51: 329-347.

    Article  Google Scholar 

  • Yoshimaru, H. & T. Mukai, 1985. Relationships between the polygenes affecting the rate of development and viability in Drosophila melanogaster. Jap. J. Genet. 60: 307-334.

    Google Scholar 

  • Zwaan, B., R. Bijlsma & R.F. Hoekstra, 1995. Artificial selection for developmental time Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution 49: 635-648.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Houle, D. How should we explain variation in the genetic variance of traits?. Genetica 102, 241–253 (1998). https://doi.org/10.1023/A:1017034925212

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017034925212

Navigation